

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

PHOENIX: SERVICE ORIENTED ARCHITECTURE FOR
INFORMATION MANAGEMENT - BASE IMPLEMENTATION
DOCUMENT

SEPTEMBER 2011

INTERIM TECHNICAL REPORT

 ROME, NY 13441 UNITED STATES AIR FORCE AIR FORCE MATERIEL COMMAND

AFRL-RI-RS-TR-2011-218

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public
Affairs Office and is available to the general public, including foreign nationals. Copies may be
obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2011-218 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
STEVEN D. FARR JULIE BRICHACEK, Chief
Branch Chief Information Systems Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

SEP 2011
2. REPORT TYPE

Interim Technical Report
3. DATES COVERED (From - To)

JAN 2009 – NOV 2010
4. TITLE AND SUBTITLE

PHOENIX: SERVICE ORIENTED ARCHITECTURE FOR
INFORMATION MANAGEMENT - BASE IMPLEMENTATION
DOCUMENT

5a. CONTRACT NUMBER
In House

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

V. Combs, J. Hanna, J. Bryant, B. Lipa, S. Tucker, T. Krokowski, J. Reilly, G.
Hasseler

5d. PROJECT NUMBER
S2TS

5e. TASK NUMBER
IH

5f. WORK UNIT NUMBER
03

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
AFRL/RISE, 525 Brooks Road, Rome, NY 13441-4505
ITT, 775 Daedalian Drive, Rome NY 13440
RRC, Ridge Street, Rome NY 13440
ATC-NY, Thornwood Drive, Ithaca NY

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/Information Directorate
Rome Research Site
26 Electronic Parkway
Rome NY 13441

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2011-218

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 88ABW-2011-0021

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This document outlines the specifics of the Phoenix Base Implementation including technologies utilized and key design decisions.
The Base Implementation consists of three segments: the component packages, the service packages, and the support packages. The
component and service packages map functionally and semantically to their respective Phoenix Architecture packages of the same
name. The support package contains the implementation specific packages designed to make utilization of the developed Phoenix
services more convenient for the outside developer.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

76

19a. NAME OF RESPONSIBLE PERSON
VAUGHN COMBS

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

i

Table of Contents

Design .. 1

Conventions .. 1

Diagram Conventions .. 1

Implementation Language .. 2

Code Conventions and Formatting ... 2

FindBugs : Bug Finding and Reporting Plug-in .. 3

PMD ... 3

Component Package Implementations ... 3

Service Implementations .. 17

Edge - Actor Services ... 19

Tier 1 - Information Management Services .. 19

Tier 2 - Information Management Services .. 25

Tier 3 - Information Management Services .. 38

Tier 4 - Administrative Services .. 44

Support Packages .. 47

Common Utilities .. 47

Buffering ... 48

Example Applications .. 52

Example Config Applications ... 54

Java Service Container (JSC) .. 55

Performance Applications ... 57

Third Party Libraries .. 58

Berkeley DB XML ... 58

Mockets ... 60

XPP3 .. 60

XStream ... 60

Requirements .. 60

Testing ... 61

Unit Testing ... 61

ii

Integration Testing .. 62

Existing Integration Tests .. 62

Performance Testing ... 64

Reference .. 65

Reference .. 65

Documents .. 65

Terms and Acronyms .. 65

Releases .. 68

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
1

Design

This document outlines the specifics of the Phoenix Base Implementation including technologies
utilized and key design decisions. The Base Implementation consists of three segments: the
component packages, the service packages, and the support packages. The component and
service packages map functionally and semantically to their respective Phoenix Architecture
packages of the same name. The support package contains the implementation specific packages
designed to make utilization of the developed Phoenix services more convenient for the outside
developer.

Conventions
This document provides both a literal and conceptual design of the Phoenix architecture. The
literal architecture is a technical specification defined using UML. The conceptual architecture is
a less formal description using plain language and diagrams to provide design concepts and
objectives.

Diagram Conventions

Throughout this document there are a number of non-UML diagrams that are used to illustrate
high-level concepts. Samples of these diagrams are shown below along with usage information.

The figure below shows a sample communication between Phoenix entities via channels.

Entity Meaning Color

Producer Produces information.

Service Manipulates information.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
2

Consumer Consumes information.

Actor A generic term that can mean producer, consumer, or service.

Inquisitor A type of consumer that queries a service to get information.

The figure below is a sample diagram showing labeled information flow.

Implementation Language

Java was selected as the development language of choice for this project due to several factors:

• Ease of Use and Understanding

• Existing Built-in Features including support for RMI, XML, and Concurrency

• Availability of numerous 3rd party libraries such as Log4J, XPP, among many others

• Development Team Experience

At design time the decision was made to go with the latest version of the Java Software
Development Kit (SDK) available, which was Java Developer's Kit (JDK) 6. JDK 7 could not be
considered because it is in an early development phase, which introduces too much risk and
would inhibit engineering productivity.

Code Conventions and Formatting

Code formatting is a huge issue in a distributed development environment. Formatting has been
standardized for the project by applying a standard format configuration file that is enforced
through the activation of the Checkstyle plug-in for Eclipse and Maven. The current Eclipse plug-
in version is 4.4.2 and the current Maven plug-in version is 2.2. More information about the
Checkstyle Eclipse and Maven plug-ins can be found at the Checkstyle web-site:
http://checkstyle.sourceforge.net

The current code format is an extension of Sun's suggested standard code conventions for Java
applications. Some high level settings of note are a max line length of 120 characters, a max
method size of 150 lines of code, and the application of variable declaration templates consistent
with Sun's standards.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
3

FindBugs : Bug Finding and Reporting Plug-in

Discovering bugs in a project is a job assigned to the FindBugs plug-in for Eclipse and Maven.
Bugs are reported within Eclipse by the FindBugs views provided by the plug-in while the bugs
reported by the Maven plug-in are available for view only through the Maven project module's
individual web-sites. The Eclipse FindBugs plug-in can be configured to run during every
compilation done by Eclipse while the Maven FindBugs plug-in is only run when Maven builds the
module's corresponding web-site. The current versions of the FindBugs plug-in for Eclipse and
Maven are 1.3.7 and 1.2, respectively. More information about the FindBugs Eclipse and Maven
plug-ins can be found at the FindBugs web-site: http://findbugs.sourceforge.net

PMD

The Maven builder for the project also incorporates the PMD plug-in. This plug-in, run only when
Maven builds the corresponding web-site for a project module, checks for possible bugs, dead
and suboptimal code, overly complicated conditional expressions, and duplicate code. PMD
reports are available via a link on each module's web-site. The current version of PMD Maven
plug-in used for this project is 2.4. More information about the PMD plug-in and its capabilities
can be found at its web-site: http://pmd.sourceforge.net

Component Package Implementations
An alphabetical listing of the component package implementations and their specifics:

• Channel

• Core

• Event

• Expression

• Information

• Service

• Session

• Stream

The component packages of the Base Implementation contain the low level entities that give life
to the service implementations. These include the definitions of contexts (Base Context),
services (Base Service and Base Channel Service), information (Information), events (Event and
sub-classes), and actors (Session Context). Also included are the functional implementations of
the byte, information, and event channels and expression processors.

The Base Implementation component packages have been broken into two categories: Definition
and Functional. The Definition packages contain concrete classes that define Phoenix entities
such as contexts, services, and information. Functional packages contain classes that implement
basic functionalities (expression processing, data transport) that are utilized by the service
packages to provide information management capabilities. Figure 1 shows a sliding scale of
functional to definition packages with the mainly functional packages at the bottom of the scale
and the primarily definition packages at the top. Most component packages fall within both

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
4

categories at the same time but not all. Those that do fit into both categories typically lean
towards one end of the scale. Some packages (session and information) strictly adhere to the
description of one category.

Figure 1 - Component Packages

The information and session packages are strictly definition packages because they only contain
concrete entities that implement and define some of the key concepts within their respective
Phoenix Abstract Architecture packages. The core package contains a plethora of definitions,
such as the basic context implementation, but also falls into the functional category due to the
basic implementation of the Base Service and Base Persistent Service interfaces. The event
package contains the definition of the simple Event's outlined in the Phoenix Architecture, but
also contains the event channel implementations used to move Event instances around. The
channel implementation primarily contains the basic implementation of byte and information
channels as well as the Base Channel Service, but it also contains the concrete implementations
of the Channel, End Point, and Transport Contexts. The expression package defines the
implementation of an Expression Context, but also provides the implementations of the
Expression Processor interface used by the services.

Channel

The channel package provides the underlying mechanisms that enable data transfer among
actors within the Phoenix architecture. It supports the core data types defined by the
architecture; byte, event, frame, and information.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
5

Input Channels

Common functionalities among input channels have been grouped into two levels. Functionalities
common to all input channels have been located at the top level, in the
AbstractInputChannel<T> class. At the next level down is a generic Phoenix input channel
implementation, PhoenixInputChannel<T>. Finally, the last level in Figure 2 depicts the top level
input channel constructs present in the architecture itself. These classes are composite classes,
instantiating a private instance of PhoenixInputChannel<T>.

Figure 2 - Input Channel Inheritance

Output Channels

Like the input channels, common functionalities among output channels have also been grouped
into two levels. Functionalities common to all output channels have been located at the top level
in the AbstractOutputChannel<T> class. Again, at the next level down is a generic Phoenix
output channel implementation, PhoenixOutputChannel<T>. Finally, the last level in Figure 3
contains the top level output channel constructs from the architecture itself. These output
channel classes are also composite classes, containing a private instance of
PhoenixOutputChannel<T>.

Figure 3 - Output Channel Inheritance

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
6

Channel Transports

In the transports implementation, two simple interfaces have been defined which allow for
channel implementations to seamlessly select another transport at construction. The key
interfaces here are ClientTransportInterface<T> and ServerTransportInterface<T>. Any new
transport implementation may be added, so long as it implements these two interfaces. An
example of a network-based transport that might be added at some point in the future is a Java
sockets-based TCP transport.

Figure 4 - Channel Transports Inheritance

Channel Handlers

The handler implementation has divided functionalities into two interfaces. The first interface, the
HandlerInterface, is for handling exceptions. The second interface, InputHandlerInterface<T>, is
for handling asynchronous reads. These interfaces are implemented in two classes, Handler and
InputHandler<T>, respectively.

Figure 5 - Channel Handlers Inheritance

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
7

Channel Implementation

The channel implementation is composed of a number of sub-packages. The key sub-packages
are contexts, handlers, and transports.

• contexts The contexts sub-package defines a number of contexts that are used within
the channel package. These contexts include ones for configuring the high-level input and
output channel abstraction, as well as supporting abstractions, such as end-points,
application protocols, and transport protocols.

• handlers The handlers sub-package defines callback objects that are used by
asynchronous channel operations.

• transports The transports sub-package provides a variety of low-level transports that
are utilized by channels. It provides a memory-based transport (for communications
within the same JVM), as well a variety of network-based transports and encoders and
decoders.

Blocking and Non-Blocking IO

A single channel construct provides both blocking and non-blocking IO. Non-blocking IO methods
are denoted by the suffix "Async," all other methods are assumed to be blocking.

Blocking methods, when called on a channel, block until their results are ready, and then
immediately return their results. Non-blocking methods, however, return immediately after being
called. The results of these method invocations are returned to an associated callback object,
which this implementation refers to as handlers. Input channel based non-blocking methods
return their results to a class implementing InputHandlerInterface<T>, to which they are
provided a reference at the time of method invocation. Output channels, on the other hand, are
associated with a class implementing HandlerInterface during construction, and non-blocking
methods return their results to the associated handler.

Wire Format

All of the implemented transports package their payloads into instances of the
MessagePacket<T> class. Typically, network-based transports will use MessagePacket<byte[]>,
and memory-based transports will use MessagePacket<Object>. The MessagePacket class allows
transports to communicate messages with different semantic meanings. This functionality
becomes critical when performing such tasks as connection negotiation and connection
management.

The supported message types are WELCOME, WELCOME_RESPONSE, PAYLOAD, and GOODBYE.

Encoding and Decoding

The message encoding and decoding interfaces dictate that the final encoding of an object be a
byte[], and that the final decoding of an object originate from a byte[]. Encodings are set in the
TransportContextInterface. Currently, only one encoding at a time is supported, despite the
TransportContextInterface implying that multiple encodings may be selected.

The two encodings currently provided by base-implementation are javaserial and xml. javaserial
is the default encoding.

Connection Negotiation

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
8

The process of connecting two channels is relatively straight-forward. An input channel must first
be created from a ChannelContextInterface object. If a legal, non-zero port number has been
specified, the channel will attempt to utilize this port; otherwise, a port will be selected by the
system and the ChannelContextInterface object updated appropriately. In order for the newly
created input channel to begin accepting connections, it must first be opened, which is done
using the open method. The next step in the process is creating an output channel that will
connect to the input channel. An output channel is created in the same way as an input channel,
except the ChannelContextInterface object must contain a URI to a legal input channel, and its
constructor must be passed a HandlerInterface object. The output channel may then be
connected to the input channel by calling its connect method.

Upon receiving a new connection, the underlying server transport of the input connection sends a
WELCOME packet/message containing a copy of its ChannelContextInterface object to the newly
connected client transport of the connection output channel. Upon receiving the WELCOME
message, the client sends an acknowledgement back to the server in the form of a
WELCOME_RESPONSE message, containing a copy of its ChannelContextInterface object. From
this point forward, the client sends PAYLOAD messages until it wishes to close the connection.
When the client wishes to disconnect from the server, it sends a GOODBYE message to the
server. This connection sequence is designed to allow an input channel to know which output
channels are connected to it as well as allow for the possibility of performing dynamic connection
reconfiguration.

Core

The core component package is the lowest common denominator of the Base Implementation
code. This package includes the context, service, stub, and connector classes that form the base
for all other component and service entities.

Contexts

Contexts are implemented as java.util.Map objects as this seemed the obvious choice for a Java
object that utilizes name-value pairs. The Base Context class is implemented as an abstract class
because it was determined at implementation design time that being able to instantiate a copy of
a Base Context was not desired. Base Context instances would not be useful because all
interfaces take specific sub-classes of contexts as parameters, not the generic Base Context.

Connectors and Stubs

RMI

The default implementation of Phoenix connectors and stubs was accomplished by using
standard Java Remote Method Invocation (RMI). This was done because it is a technology that
the design team is very familiar with and has used extensively. The core package implements the
base level RMI connector and stub that all other service connectors and stubs extend, thereby
inheriting the same exact RMI-specific connection code.

PIC

The Base Implementation also supports the ability to invoke services across language
boundaries. The Phoenix Invocation Control (PIC) control channel allows information channel and
control channel interactions across the Java and C++ language boundary. The PIC accomplishes
this through a custom serialization of Phoenix objects.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
9

Base Service

The implementation of the Base Service interface also implements the Base Persistent Service
Interface so that there is one parent, abstract service class that provides both sets of
functionalities. The persistence of service state is an important feature to share amongst all
Phoenix service implementations. Implementing this interface within the Base Service class also
allows for easier transition of the Base Channel Service interface to a cohesive implementation,
at least within Java.

Base Attribute Update Callback

This callback is used by the implementation to notify registered entities of changes to specific
attribute values witin a context. For example, if a Service Context has a set of callbacks
registered with it that are triggered by the 'Service-State' attribute, whenever this attribute's
value is changed the callbacks and their resident logic will be executed. It is envisioned that
these callbacks could include policy driven logic decisions for other entities or messaging
protocols to alert other entities of the change that occurred.

Event

The event component package contains the concrete constructs used to define what an event is.
An event contains a body that is a generic Object. An event context also contains a field that is a
generic Object, referred to as the event expression data, which is used by the ENS for brokering
fired events over registered notification requests.

The event package also contains the Event specific channel implementations for moving Events
around amongst Phoenix actors. The current set of supported transport level protocols is:

• memory - An implementation of channels that uses the memory space of the Java Virtual
Machine (JVM) to transfer objects around.

• tcp - An implementation of the Transport Control Protocol (TCP) that uses the
java.net.ServerSocket and java.net.Socket classes.

• udp - An implementation of the User Datagram Protocol (UDP) that uses the
java.net.DatagramPacket and java.net.DatagramSocket classes.

• mocket - An implementation of the Mockets protocol defined by IHMC.

The Event Implementation Classes:

The current implementation of an event fully implements the Event interface as represented in
the Phoenix architecture and base-interfaces. Event implementation classes may provide
additional methods to retrieve all of parts of the message body in their native formats. In
particular the class maintains the following attributes associated with an event:

• Event Context - This context describes additional detail about an event.

• Firing Actor ID - The session identifier of the actor firing this event.

• Event Body - The body of the event, any serializable object.

Event Notification Use Cases:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
10

1. Consumer Hit Lists generated by Information Brokering,

2. Input Channel Status Updates from the Submission Service,

3. Output Channel Status Updates from the Dissemination Service,

4. Subscription Status Updates from the Information Brokering Service,

5. Submission of Information Acknowledgment and Negative Acknowledgment, and

6. Consumer Acknowledgement of Information Receipt

Current Set of Event Classes:

• Consumer Hit List Event - describes what subscriptions matched a brokered instance of
information.

• Information Acknowledgment Event - acknowledge receipt of a specific information
instance.

• Information Watch Event - signal an actor to watch for receipt of a specific information
instance.

• Input Channel Status Event - status update for a specific input channel. Contains a
(possibly modified) copy of the channel's context.

• Output Channel Status Event - status update for a specific output channel. Contains a
(possibly modified) copy of the channel's context.

• Submission Negative Acknowledgment Event - alert event for signaling that a
specific instance of information was not received within the amount of time specified by a
previous Information Watch Event.

• Subscription Status Event - status update for a specific subscription. Contains a
(possibly modified) copy of the subscription's context.

The current set of events also includes several sub-typing classes such as the Information,
Information Type, and Exception event classes. These are higher level classes meant to be
extended for specific operational use.

The event package also contains an EventChannelFactory implementation along with multiple
EventInputChannel and EventOutputChannel implementations. The definitions and differences
between block and stream implementations are may be found in the channel package
documentation.

Expression

The expression implementation module contains the Base Implementation expression processors
and contexts. All provided Base Implementation expression processors can be configured to
either evaluate expressions and their related information types or just expressions (typed vs.
untyped evaluation). All Base Implementation expression processors extend an Abstract
Expression Processor class that defines common things such as the map containing the
registered expressions. Due to the use of a map for maintaining the registry of expressions,
evaluation order cannot be guaranteed for any Base Implementation processor. Base
Implementation expression processors are as follows:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
11

• Context - Supports brokering over context attributes. Assumes equals operations for all
attributes unless the attribute is a Collection. Collections are assumed to be a contains
operation. Assumes the AND conjunction for all operations, OR is currently not supported.

• Expressionless - Supports brokering over null expressions.

• Regular Expression - Supports all regular expressions via built in Java support.

• XPath - Supports all XPath 1.0 and most XPath 2.0 functions and capabilities via use of
the XML Pull Parser version 3 (XPP3) library.

Expression Evaluation

Expressions are evaluated one at a time. If the expression matches, the associated expression
context's name is added to the list of matching expression identifiers to be returned to the entity
doing the evaluation. This name may be a subscription name (in the case of information
brokering in the IBS it certainly is) or it may be some other identifier. The identifiers returned
have no semantic meaning to the expression processors themselves but instead mean something
to the entity doing the evaluation.

Frame

The frame package contains the components that provide the custom serialization,
encapsulation, and stream sequencing (and dissemination) capabilities of the Base
Implementation. These components include the frame object itself and the frame specific input
and output channels.

Information

The information component package contains the embodiment of the central object of the
Phoenix architecture, the information instance. This object contains four member variables and a
bunch of set and retrieval methods. One of these variables is the Information Context. The
information instance contains the metadata, payload, and information type identifier while the
Information Context is used to store any additional descriptive data about the information
instance such as the identifiers of the interested consumers and the degradation flag.

Figure 6 - Information Instance

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12

Figure 6 shows the four elements that comprise an instance of information. Remember from the
Phoenix Abstract Architecture documentation that an information instance can exist with any
combination of these elements that contains at least one of the four fields shown above.

Metadata

Metadata within the Phoenix Base Implementation is an instance of a generic Java Object,
requiring a specific casting operation to be performed to extract it in a native format (i.e. String,
byte[]). Currently this is the main field utilized to describe the information instance by brokering
and retrieval operations.

Payload

The payload of a Phoenix Base Implementation information instance has also been implemented
using the generic Java Object. Future work may include the addition of payload processing to
information brokering and retrieval operations.

Type Identifier

Phoenix Base Implementation information type identifiers are simple strings. This notion may be
extended in the future to enable some form of hierarchical relationships among information type
definitions, but none exist at the present. The Base Implementation does not understand or care
if information type identifiers are single words or organized into packages such as Java classes
typically are (i.e. 'mil.af.aircraft' and 'mil.n.ship' are treated as simple strings, nothing more).
The empty string or a null value is used interchangeably by the Base Implementation to identify
un-typed information. When performing information brokering, validation, persistence, and
retrieval operations the information type identifier is utilized by the corresponding services in
various ways. Information type identifiers in information instances should map to a single
Information Type Context known to some Information Type Management Service. If not, the
information will be treated as un-typed information and will be subject to the restrictions
inherent with that tag when performing any or all of the aforementioned operations.

Context

The Base Implementation information instance's context has been extended beyond the
architecture's definition of such a context by including a field for associated query identifier. This
field is used to tag information instances being retrieved as part of a query's result set and has
uses that include monitoring and tracking.

Service

The service package contains the components and utilities common to all Base Implementation
services including the Channel Managers, Service Multiplexors, and Task Schedulers. All of these
are pluggable for each unique service instance and are fully mappable to Spring-based
configurations.

Control Channel Manager

The Control Channel Manager (CCM) provides a registry for service stubs. Each Phoenix service
contains a single CCM that maintains the set of service stubs used by the CCM's parent service.
For example, the CCM for a Submission Service (SS) may contain a set of Information Brokering
Service (IBS) and Repository Service (RS) stubs. The CCM provides methods for adding,
retrieving, and removing stubs as well as methods for connecting and disconnecting them. The

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
13

CCM methods for adding stubs provide the option of connecting the stub at the time of addition
or at a later time.

Input & Output Managers

Input managers provide a boundary between the input channels and the actual service logic that
processes them. The Base Implementation input managers are built upon the notion of a timer
based buffer, which is a buffer that spends on a regular interval. The spend size, max buffer size,
and spend interval are all configurable via a properties file (TimerBasedBuffer.properties). This
file is not required, but if it is not found on the classpath all buffer's will utilize the hard-coded
default settings. Buffer's are distinguishable by name. Output managers provide another break
point between the service logic and the outgoing transmissions. Both input and output managers
have been implemented through the use of the Java generics pattern, meaning that each
instance of a manager may process a single, known object type. Input and output managers are
maintained and controlled by a Phoenix service's Channel Manager.

Channel Manager

The Channel Manager (CM) is responsible for managing the parent service's input and output
managers and channels. It also maintains the registry that maps channels to managers.
Assigning an input channel to a manager causes any objects received by that input channel to be
sent to the associated manager for processing. The default input manager for the Base
Implementation is the Information Timer Based Buffer Input Manager. Assigning an output
channel to a manager will result in any object sent to that manager to be written to the channel.
The default Base Implementation output manager for information is the Information Timer-Based
Buffer Output Manager. This buffer's operations are not unique to any specific Phoenix service
and are suitable for all cases where transmission of information is done via output channels. The
following diagram shows the table setup for configuring a CM with one input and one output
manager along with some accompanying channels.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
14

Figure 7 - Channel Manager Configuration Tables

Figure 7 shows an example configuration of a Channel Manager's internal constructs. The
manager contains a set of input and output channels, a set of input and output maanagers, and
a set of channel to manager associations. Each channel and manager is required to have a
unique name for mapping purposes. The name for a channel or manager is set by setting the
name field of a channel's context or the name field of the manager (set through the manager's
constructor). The example in Figure 7 shows how channels are assigned to a manager for
managed input and output operations and it also shows that channels need not be assigned to
managers at all, if unmanaged I/O is desired. The output channel named "ac-channel" is not
assigned to an output manager and, hence, is an unmanaged output channel.

Service Multiplexor

Support for interactions with multiple service instances is provided by the service multiplexor
interface. Service multiplexors are conditional multiplexors, i.e. they compute an output based
on the given input and a set of rules that govern how the multiplexor functions. The output of a
service multiplexor can be anything due to the use of the Java wild card type. However, it should
be noted that the object invoking the service multiplexor must be capable of processing the
result returned by the multiplexor.

The Base Implementation contains a Default Service Multiplexor (DSM) whose conditions are the
type of objects it is provided. Currently, these include the Phoenix Information, Event,
Information Type Context, Information Brokering Context, Information Query Context, and Event
Notification Request Context interfaces. Supported outputs from the DSM include Information
Timer-Based Buffers and channels and Phoenix service stubs. The following diagram shows a
DSM for a Submission Service that is configured to write directly to output channels.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
15

Figure 8 - Default Service Multiplexor Simple Example

IBS-P Information Brokering Service for Properties-based Information

IBS-X Information Brokering Service for XML-based Information

RS-P Repository Service for Properties-based Information

RS-X Repository Service for XML-based Information

SS Submission Service

The SS in this diagram is configured with a DSM that directs properties-based information to one
set of services and XML-based information to another set of services. In this setup the SS is the
invoker of the DSM and performs output channel write operations directly, with no service level
buffering of outgoing information. The DSM can also be configured to support multiple types of
returns for one or more conditions. The following diagram depicts this type of configuration and
its resulting information flow.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
16

Figure 9 - Default Service Multiplexor Complex Example

IBS-P Information Brokering Service for Properties-based Information

IBS-X Information Brokering Service for XML-based Information

RS-P Repository Service for Properties-based Information

RS-X Repository Service for XML-based Information

SS Submission Service

This diagram shows a SS that is configured to add XML-based information to a specific output
buffer but to directly write properties-based information to the configured set of output channels.

Most Phoenix services utilize an instance of the Default Service Multiplexor for configuring its
interactions with other Phoenix services. This multiplexor forwards objects based upon the fully
qualified object class name. For example, it may be configured to send all Information instances
to service X and all event instances to service Y. There exists another multiplexor, the
Information Service Multiplexor, that supports multiplexing of information by type name. For
example, the Information Multiplexor may be configured to send all information of type
'mil.n.ship' to service A and all information of type 'mil.af.cot' to service B. This multiplexor only
supports objects that implement the Information interface.

Some of the Base Implementation services have a Service Multiplexor setup at start-up time but
do not currently use it for any operations. Examples of this include, but are not limited to, the
Authorization and Session Management services.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
17

Task Scheduler

The Base Implementation services use tasks and the task scheduler to perform their service-
specific processing. The default implementation uses the Timer (java.util.Timer) and Timer Task
(java.util.TimerTask) objects to implement tasks and the task scheduler. This capability is used
by several services to schedule periodic status updates for various components including input
and output channels and subscriptions. It is also utilized by the Dissemination Service as an
integral part of its Consumer Black Listing capability.

Session

The session component package contains the classes used to describe actors and their respective
user interactions with the Phoenix services in the form of contexts and the Session Track object.
The Actor Context is used to describe who the actor is including security credentials or other data
about the actor's identity. The Session Context is a service generated object that is used to track
the actor's interactions with the Phoenix services; much like an HTTP session is used to track a
user's online activity. The Session Track object is used by all Phoenix services to track what
actors are making invocation calls on their exposed interfaces and for authorization operations
within those invocations.

Session Identifier as an Object

A Java object is used to represent the session identifier to support any implementation of session
identity consistent with the Phoenix architecture. Having this field be represented by a generic
object allows one implementation of the services to use some form of a token while another
implementation may use a simple string. A specific representation of this field has not been
selected for the Phoenix Base Implementation.

Stream

The stream component package contains the streaming specific components shared amongst the
set of streaming services. These components include the basic contexts and enumerations used
by the Base Implementation to provide support for streaming operations.

Service Implementations
The Phoenix Base Implementation services can be organized into two distinct categories: Edge
and Operational. Edge services are fully exposed to edge actors and may even be located within
edge actor address spaces (i.e. they may be code that is downloaded and executed on an edge
actor's machine). Operational services provide information management capabilities and are
hosted by remote machines so they can be accessed as required by the Service Oriented
Architecture (SOA) for information management operations.

Base Implementation Services are also broken into two functional categories: Administration and
Information. Administrative services provide functionality that enables advanced information
management operations (i.e. authentication and authorization or service brokering) while
information services provide the basic functions for managing information (i.e. information type
management and information brokering).

In addition to functional categories, the Base Implementation Services are also grouped by the
expected interaction levels and deployment locations; both service to service and edge actor to

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
18

service. There are five of these groupings, identified in Figure 10: Edge Services, and Tier 1
through 4 Services. Edge services live within the address space of edge actors while tiered
services may have edge facing connections but do not live within an edge actor's address space.

Figure 10 - Service Packages

AS Authorization Service QS Query Service

CRS Client Runtime Service RS Repository Service

CS Connection Service SBS Service Brokering Service

DS Dissemination Service SMS Session Management Service

ENS Event Notification Service SS Submission Service

FMS Filter Management Service SUS Subscription Service

IBS Information Brokering Service XBS Stream Brokering Service

IDS Information Discovery Service XDS Stream Discovery Service

ITMS Information Type Management Service XRS Stream Repository Service

The following descriptions provide insight into the semantics and usage of the Base
Implementation of the Phoenix Abstract Architecture. Other implementations of this architecture
may choose to group their services differently and even define the services' operational

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
19

semantics differently.

Edge - Actor Services

The Base Implementation Actor Services are services that are fully exposed to the edge actors,
meaning that they are available for both control and channel operations. Edge services may be
hosted by edge actors within their own address space (i.e. integrated into a non-Phoenix
application to provide connectiviy to Phoenix services). Actor Services include:

• Client Runtime Service

Client Runtime Service

This class ensures that there is a service oriented presence on the client-side to support event
notification and connectors for reach-back from services to the client. This allows core IM
Services the ability to influence external actors' address space providing a possible location for
client -side policy enforcement and updating, event notification, or other service-to-external
actor interactions. This ability becomes doubly important when operating on a disadvantaged
network where actor communications may phase in and out over time due to networking
degradation or other operational conditions. In this environment the client runtime service may
provide a network buffer at the application level by queuing outgoing data until it can be
transmitted or it may provide proxy IM capabilities for the client while it is disconnected from the
network.

Tier 1 - Information Management Services

The Base Implementation Tier 1 Information Management Services directly interact with the
edge actors via information and event channels. Control operations upon these services by edge
actors are possible, depending upon the security policies being enforced by the implementation.
Tier 1 services include:

• Dissemination Service

• Event Notification Service

• Submission Service

Dissemination Service

The Dissemination Service (DS) performs simple information distribution operations based on a
round-robin scheduling algorithm. The DS is responsible for creating the information channel
between a consumer of information and itself. This service is used by the Information Brokering
and Repository Services to deliver information to registered subscribers and designated result set
consumers, respectively. When an instance of information is read by the DS, it retrieves the list
of channel definitions from the information instance's resident context, creates the channel(s) if
they do not already exist, and then writes the information instance to each output channel in
turn. It is important to note that no copying of the information instance is done during the
dissemination process, the same instance of information is written to the output channel for each
interested consumer, as shown by the figure below. For an in-depth Base Implementation

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
20

operational flow for information submission, brokering, and event notification or information
delivery see the Submission Service section of this document.

Figure 11 - Dissemination Service Use Cases

C Consumer One I Phoenix Information instance

C2 Consumer Two IBS Phoenix Information Brokering Service

DS Phoenix Dissemination Service RS Phoenix Repository Service

Black Listing

The Dissemination Service may be configured to track consumers that are no longer reachable
and to attempt to contact them again at some point in the future. This capability is referred to as
'Black Listing.' When a delivery attempt is made, the DS will attempt to deliver the same object
to the same consumer a configurable number of times. Once this limit is reached the DS will
clean up the related output channel and add the consumer information to its Black List. Any
further objects tagged for delivery to this consumer will not be delivered to them, nor will they
be cached for later delivery. If configured to do so, after a set amount of time the DS will remove
the consumer from its Black List. After this point the next object that is received that should be
delivered to this consumer will result in the DS attempting to contact and deliver the object. Due
to timing, visibility, and threading concerns this ability does not work very well with
asynchronous deliveries at this time. By this we mean that if the max delivery attempts is set to
three the DS may attempt to send more than three messages to a particular consumer before
they are Black Listed resulting in lost computational cycles. This may be corrected in the future
through the use of custom output channel handlers for the DS or via some other design.

Dissemination Service Events

The DS can be configured to periodically fire events that describe the current status of the
registered consumer channels. The settings for these events are located in the service's context
and are fully configurable. The settings for output channel status update event firings are as
follow:

• Event Firing Enabled - The flag that globally enables or disables event firings for the DS.

• Output Channel Updates Enabled - The flag that enables output channel status event
firings.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
21

• Output Channel Status Update Period - The fixed interval, in milliseconds, between output
channel status events. The Output Channel Status Event contains a copy of the channel
context as a body.

Event Notification Service

The Event Notification Service (ENS) uses class and actor identifier matching algorithms to pair
fired events with registered notification requests. The Base Implementation of the ENS does this
using simple comparison operations over the firing actor identifiers and the fully qualified class
names of the fired events. By providing methods for managing the internal event registry of the
ENS, the Phoenix Architecture provides system engineers and developers a mechanism for
creating and utilizing custom event classes. The only caveat to this is that these custom events
must implement the Event interface.

Registering Event Descriptors

Registering an event descriptor with the ENS is simple. An actor invoking the registration method
provides a sample instance of the event class being registered along with a human readable
description of the event. The Base Implementation of the ENS will generate a unique identifier
for the event class and store the sample instance, the registration identifier, and the provided
description. If an event class has been previously registered, the Base Implementation of the
ENS will return the registration identifier for the currently registered event.

Event Registration Identifiers

The registration identifiers for events are used by actors registering for event notifications. This
is the field that provides the requesters the capability to define sub-sets of the registered events
that they are specifically interested in. The Base Implementation of the ENS uses the fully
qualified class name of the sample event instance provided at registration time to generate
unique identifiers.

Use Case : Consumer Hit Lists

The current Use Case for the ENS in the Base Implementation is the notification of interested
consumers for submitted information. In this case, the Producer of the information registers a
subscription with the Information Brokering Service that requests a consumer hit list be
generated for all matching information, instead of simply forwarding matching information to the
dissemination service and back to the Producer. Figure 12 shows the interactions among actors
when an Event Notification request for a consumer hit list is registered with the IBS.

Figure 12 - Consumer Hit List Registration

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
22

E Phoenix Event instance

ENRC Phoenix Event Notification Request Context

IBC Phoenix Information Brokering Context

IBS Phoenix Information Brokering Service

P Producer

String The Event Notification request identifier and the Information subscription identifier.

The event notification request process is kicked off by the Producer submitting an Information
Brokering Context to the IBS. This IBC contains the expression for information to match as well
as designating the result of the brokering operations to be a consumer hit list event in place of
forwarded information. The IBS recognizes this IBC as an event notification request and registers
the request with the ENS. The resulting request identifier is returned to the IBS and the
registered subscription identifier is returned to the Producer. The request identifier is used by the
IBS to generate Events specific to the request.

After the Producer registers for consumer hit list notification, it begins submitting information to
the Submission Service. The information is then forwarded to and brokered by the IBS. The IBS
recognizes that one of the matching subscriptions for the information instance desires a
consumer hit list in place of forwarded information and generates and fires an Event that
contains the list of matching consumers. The list of consumers contains actual end point
descriptions for out-of-band subscriptions and consumer identifiers for in-band consumers. The
fired event is received by the ENS, matched to the corresponding notification request(s), and
delivered to the event consumers, in this case the Producer. This process is depicted by the
figure below.

Figure 13 - Consumer Hit List Notification

E Phoenix Event instance

ENS Phoenix Event Notification Service

I Phoenix Information instance

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
23

IBS Phoenix Information Brokering Service

P Producer

SS Phoenix Submission Service

Base Implementation Event Classes

The table below provides the locations within the Base Implementation where services are using
events and the ENS. This table associates pre-defined event classes with the service(s) that
generate and fire the event instances.

Event Type Location

Output Channel Status Event Dissemination Service

Consumer Hit List Event Information Brokering Service

Subscription Status Event Information Brokering Service

Input Channel Status Event Submission Service

InformationReceiptAckEvent Client Runtime Service
Submission Service

Submission Service

The Submission Service (SS) is designed to support the reception of information over Phoenix
channels. The SS can host as many or as few input channels as physically possible by the
hardware and software limitations placed upon it. The main duty of the SS is to forward
information that is received to other IM services such as the Information Brokering Service (IBS)
or the Repository Service (RS). The SS may forward information to any other information
service, including other SS instances, based on the conditions defined by its Service Multiplexor
policy. The Base Implementation SS may be optionally configured to perform information
validation operations.

Forwarding of Submitted Information

The SS is designed to forward submitted information to other information processing services.
The figure below shows the concept of information submission and forwarding to a single IBS
and RS after the optional execution of information validation via type definition lookup on the
Information Type Management Service (ITMS).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
24

Figure 14 - Forwarding of Submitted Information

I Phoenix Information instance

IBS Phoenix Information Brokering Service

ITC Phoenix Information Type Context

ITMS Phoenix Information Type Management Service

P Producer

RS Phoenix Repository Service

SS Phoenix Submission Service

Submission Service as a Proxy

It is envisioned by the Base Implementation design team that this basic SS can be extended to
form the core for an information submission proxy service. Such a proxy service would receive
data in raw, non-Phoenix formats (such as Cursor-on-Target) and convert it to Phoenix
information instances. This could also be achieved by a custom channel implementation used by
the Base Implementation SS. The necessary design decisions regarding the submission,
reception, and translation of non-Phoenix data to information are specific to each project utilizing
the Phoenix Architecture and Base Implementation.

Submission Service Events

The SS can be configured to post status updates for its configured input channels at a regular
interval. The settings for this are part of the service's context and are fully configurable via the
service's Spring configuration file. The Service Multiplexor policy determines what events are
sent to which Event Notification Service(s). The SS context settings related to input channel
status update events are:

• Event Firing Enabled - The flag that globally enables or disables event firings for the SS.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
25

• Input Channel Status Updates Enabled - The flag that enables input channel status event
firings.

• Input Channel Status Updates Period - The fixed interval, in milliseconds, between input
channel status events. Input channel status events contain a copy of the channel context
for the input channel being reported on.

The SS can be configured to post information submission acknowledgment events when
information is received via one of its input channels. The settings for this are part of the service's
context and are also configurable via the service's Spring configuration file. The settings related
to information submission acknowledgment events are:

• Event Firing Enabled - The flag that globally enables or disables event firings for the SS.

• Information Receipt Ack Enabled - The boolean flag that enables or disables information
acknowledgment event firings.

Information receipt acknowledgment events contain an Information Ack object as a body. This
object wraps the identifier for the information instance and the actor identifier of the producer, if
available.

Information validation

Information validation is also performed on request by the SS. The SS context contains a
mapping of information types and their associated validation mode. Validation modes for the
base implementation are integers.

Validation Mode Definition

0 Do not validate any instances of the associated information type.

1 Validate first instance seen of the associated information type.

2 Validate all instances of the associated information type.

When a validation is performed, the information type name is used to retrieve the type
definition. Type definitions are retrieved once from the Information Type Management Service
and then cached locally for the lifetime of the SS. Metadata and payload from the information
instance being validated are processed if, and only if, the type definition contains a schema for
each. If one field has a schema and the other does not, then only that one field with a schema is
validated. If validation fails for one of the fields, a Validation Failed Exception is thrown back to
the SS. This exception is reported in the log and the information instance is discarded. The
discarded information is not sent to any information brokers or stored in any repository.

Tier 2 - Information Management Services

The Base Implementation's semantics do not allow information channel operations between edge
actors and the Tier 2 Information Management services. These services either do not directly
process information or they do not directly communicate with edge actors to receive or deliver
information. This set of services includes:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
26

• Connection Service

• Filter Management Service

• Information Brokering Service

• Information Discovery Service

• Information Type Management Service

• Query Service

• Stream Brokering Service

• Stream Discovery Service

• Subscription Service

Connection Service

The Connection Service (CS) performs complex data dissemination operations. Essentially this
service acts as a stream dissemination service. Where the dissemination service performs
simple, list-based data dissemination, the connection service uses pre-structured routes which
are built previous to an object being received. The connection service allows registration of
sources and sinks for data, and then allows for the multiplexing and de-multiplexing of sources
to sinks. This service supports streaming behavior by allowing for faster dissemination of data
without having to serialize or broker each individual object of information. The connection service
can either be used directly if the producer and consumer have known, predefined, settings for
their streams (Figure 15), or can be used via a proxy service, such as the Stream Brokering
Service (Figure 16).

Figure 15 - Connection Service, Direct Use

The Stream Brokering Service will wrap the processes of the Connection Service and manage
much of the complexity under the hood. The connection service has methods which allow direct
manipulation of a connection group (the centers of data flow) and its membership (sources and
consumers), and make matching data flowing from one source to another much simpler.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
27

Figure 16 - Connection Service, Proxy Use

Filter Management Service

The Filter Management Service (FMS) is responsible for maintaining the registry of filters to be
used by actors and for creating orchestrated chains of these filters for use by actors during
filtering operations. An actor may register new filters or create a filter chain from previously
registered filters.

Filter Registry

The filter chain registry maintained by the FMS is a simple map structure that uses the filter
context names as its keys. The values are the example instances of the filter classes. Each filter
class must implement both a default, no argument constructor and a constructor that accepts a
Filter Context as its only argument.

Creating a Filter Chain

Currently an actor creates a filter chain by creating a Filter Chain Context which contains the
desired input and output types for the chain. The FMS will then scan its registry and attempt to
assemble a filter chain that will result in the provided output type. There is no current interface
method for setting the desired number of filters in the chain or any other specific attributes for
creating the filter chain, making this a very fundamental capability. Future work may include
upgrading the filter chain creation abilities offered to external actors.

Information Brokering Service

The Information Brokering Service (IBS) uses a pluggable architecture to support the set of
potential expression processor technologies. The actual processing code, specific to the
information formats and technologies used for processing is all contained within the expression
processing package, while the supporting code that loads and executes it is contained within the
IBS.

The Base Implementation of the IBS currently supports integration with other services via the
Service Multiplexor. This allows the IBS to forward brokered information to other services of any
type. The most common example of this would be to forward brokered information directly to
one or more Dissemination Services for delivery to interested consumers.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
28

Figure 17 - Information Brokering Service

C Consumer One IBS Phoenix Information Brokering Service

C2 Consumer Two P Producer

DS Phoenix Dissemination Service SS Phoenix Submission Service

I Phoenix Information instance

Figure 17 shows the flow of information through the IBS. Producers submit information via one
or more Submission Service instances. These SS instances forward the information to the IBS for
brokering. The IBS brokers the information, and as a result, tags each information instance with
a list of consumer channel definitions associated with the expressions that matched the
information. The IBS then forwards the information instance to a Dissemination Service for
delivery.

Subscription Registration

To register a subscription a consumer sends a Subscription Context by invoking the
'registerSubscriptions()' method on the IBS. This method is inherited from the Subscription
Service (SUS) interface. This context contains the channel contexts that define the output
channels to be used to disseminate matching information instances to consumers. It is these
channel contexts that the IBS tags brokered information with. The IBS completes the
subscription process by registering the expressions contained within the Subscription Context
with its resident expression processors. This registration is performed based on expression type,
each processor supporting a single, unique expression type.

Figure 18 - Information Subscription

C Consumer

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
29

IBC Phoenix Information Brokering Context instance

IBS Phoenix Information Brokering Service

String A java.lang.String instance, i.e. some flavor of identifier be it subscription or consumer.

Figure 19 depicts the operational flow for subscription registration.

Figure 19 - Subscription Operational Flow

CC Channel Context IDs Subscription Identifiers

Conn Connector SC Subscription Context

ENRC Event Notification Request Context SUS Subscription Service

ENS Event Notification Service

The subscriber begins the subscription registration process by creating a Subscription Context.
This context is submitted to the Subscription Service via a control channel (the service connector
& stub). In this example, the Subscription Service is also its own Information Brokering Service
so the service checks the brokering result type for the submitted subscription. If it is set to
consumer hit lists an Event Notification Request Context is generated and registered with the
configured Event Notification Service(s) through another control channel. Otherwise the result

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
30

type is set to information so no additional actions are required at registration time. The
subscription context is stored by the IBS and its expressions registered with the appropriate
expression processors in preparation for matching against incoming information.

Subscription Identifiers

Registered subscriptions are identified by their resident names. These names are part of the
subscription context. The default value for a context name is the context identifier guaranteeing
that, if no name is set, the identifier is unique.

Subscription Evaluation

Subscription evaluation is done via the supporting expression processors. The IBS evaluates an
information instance with each processor, appending the returned subscription identifiers to a
master list of identifiers. When the evaluations are complete the IBS then loops through the
registered subscriptions and checks if the number of expressions for a subscription equals the
number of times that subscription identifier appears in the master list. If it does then the
subscription matches the brokered information and the correct information brokering operations
will take place depending on the defined result for that subscription (forward information to
consumers or event notification). If the subscription identifier does not appear in the master list
the requisite number of times then the subscription does not match the brokered information and
nothing is done.

Updating Expressions

The Phoenix Base Implementation will only support the updating of expression tests or other
light weight context values. It will NOT support the updating of registered consumer channels for
a subscription. Changing these (adding, deleting, etc.) or their resident static settings (host
name, port number, etc.) will require a drop and re-registration process.

Events

The IBS provides the capability to register for consumer hit lists for subscriptions instead of
receiving matching information instances. These Consumer Hit Lists are delivered via custom
Consumer Hit List Events whose bodies are a Consumer Hit List object.

The IBS can be configured to fire subscription status events at a fixed rate by using settings
located in its service context. These settings are fully configurable via the Spring configuration
file, when using one. The settings for firing subscription status update events are as follow:

• Event Firing Enabled - The flag that globally enables or disables event firings for the IBS.

• Subscription Heartbeat - The flag that enables or disables subscription status event
firings.

• Subscription Heartbeat Period - The fixed amount of time, in milliseconds, between
subscription status events.

Subscription status events are used to report the current status of individual subscriptions. The
body for this type of event is a Subscription Status object that contains the identifier of the
information brokering context that was registered, the subscription that was generated from that
context by the IBS, a boolean flag denoting whether or not the subscription is suspended, the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
31

total number of information instances processed against the subscription to date, and the time
stamp of when the last matching message was processed.

Information Discovery Service

The Information Discovery Service (IDS) provides a simple interface for "discovering" what
information types are known to the Information Management (IM) services and what services are
supporting which types.

Discovering Information Types

The IDS communicates with one or more Information Type Management Services (ITMS) to
provide the information type discovery capability. This allows actors a central focal point for
finding out what types of information are known to the set of information management services.
The reliance on the ITMS (one or more) means that unregistered types of information are not
discoverable by the IDS.

Discovering Supporting Services

This capability allows an actor to discover what services are available to support information of a
specific type. This capability also offers the option to search for specific service types. If an actor
wishes to submit information of a certain type through a service that has been deployed for this
function they can use this capability to locate a stub for said service, allowing them to connect to
it and submit their information. This capability has been implemented using the Service
Brokering Service (SBS) and its service descriptor and brokering capabilities. Therefore a service
is not truly "discoverable" by the IDS unless it has been registered with the SBS (one or more)
that the IDS is communicating with.

Information Type Management Service

The Information Type Management Service (ITMS) stores the definitions for registered
information types. The information type name is also referred to as the information type
identifier. The ITMS stores the information type definitions in memory using a simple
java.util.HashMap construct where the key is the information type identifier and the value is the
actual Information Type Context object. This map of information type definitions is included as
part of the ITMS service context and, as such, is included in any store or load operations
performed by the ITMS. The ITMS also supports the concept of archiving information type
definitions, meaning that the definition is not considered active, but is kept for archival and
tracking purposes. This archive function is supported via the XStream library just as the store
function is for all services.

Information Type Definitions

Information type definitions must contain an information type identifier. Un-typed information is
supported by the definition of an un-typed information type where the information type identifier
is either set to the empty string or null. Registered information types do NOT, however, require
metadata or payload schemas. A registered information type definition may contain one or both
schemas in an effort to describe the format and content of a specific type of information.

Information Type Relationships

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
32

Currently the Base Implementation does not support any notion of relationships amongst
information type definitions. A parent-child relationship scheme, with children inheriting and
augmenting the metadata definitions of their predecessors may be implemented sometime in the
future.

Schemas

Information type definitions may contain a metadata or payload schema or both. These schemas
are represented in the abstract architecture as Objects to allow flexibility at implementation time
regarding what exactly these definition documents are to be. For XML information a schema
document may be a DTD, XML Schema Document (XSD), or something else. For the home-
grown support for name-value pair based metadata the schema document is an Attribute
Schema Document (ASD). The ASD format is an AFRL developed definition of name-value pairs,
their data types, and expectancy (REQUIRED vs. OPTIONAL).

Auxiliary Elements

Since information type definitions are context based they can support any additional elements
other than type identifier and metadata and payload schemas. For example information type
definition contexts could be used to store data processing libraries specific to an information type
or other useful items such as priority tags. The Base Implementation does not exercise this
ability, but it exists and needs to be advertised.

Example Information Types

The Base Implementation uses three simple example information types for basic testing of the
implementation's information management capabilities. Their information type identifiers are:
mil.af.aircraft, mil.n.ship, and mil.a.infantry. These three information types provide support for
two unique representations of metadata: name-value pair and XML. The mil.af.aircraft
information type has metadata that is name-value pair based while the other two types have
XML based metadata.

Information Type Identifier Metadata Schema Payload Schema
mil.a.infantry mil.a.infantry Metadata.xsd None.

mil.af.aircraft mil.af.aircraft Metadata.asd None.

mil.n.ship mil.n.ship Metadata.xsd None.

Orchestration with Repository Service

The Base Implementation of the ITMS includes the ability to orchestrate with one or more
Repository Services (RS). The ITMS, at start up, information type definition registration, and
information type de-registration time will attempt to contact each of its configured RS instances
to alert them to start or stop storing information of certain types.

At start up time, the ITMS will automatically attempt to load a saved ITMS state file. If one is not
found, a warning is logged, but no errors occur. If one is found, the ITMS will set its state to that
pulled from the file and tell each of its configured RS instances (also pulled from the state file) to
begin storing information of the types loaded from the ITMS state file.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
33

At information type definition registration time the ITMS will attempt to tell each of its configured
RS instances to begin storing information of the types being registered. The Base
Implementation of the ITMS blindly invokes this method call on each of the configured RS
instances, without any special algorithm(s) to determine which should and should not store
information of a specific type.

The case of information type de-registration is similar to that of registration, with the main action
reversed. Instead of telling each RS instance to begin storing information of a specific type or
types, the ITMS now tells each RS instance to stop storing information of that type or types.

Query Service

The Query Service (QS) currently supports synchronous or asynchronous query operations
against one other QS. It is important to note here that all Repository Services (and their
connectors and stubs) all extend the Query Service interface (and its connector and stub
interfaces respectively) so that all RS instances are indeed QS instances as well and therefore
able to be queried via the basic implementation of the QS. Future plans include supporting more
than a single QS to fan queries out to, injecting some form of access control logic specific to
query apportionment and processing, and support for result set aggregation, normalization
(sorting) and intersection (eliminating duplicate results).

Figure 20 - Query Service

DS Phoenix Dissemination Service

I Phoenix Information instance

IQC Phoenix Information Query Context

NQ Native Query Statement (i.e. SQL, XQuery, etc.)

NRS Native Result Set (i.e. JDBC Result Set object, Berkeley Result object, etc.)

QS Phoenix Query Service

RS Phoenix Repository Service

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
34

Figure 20 shows a simple view of the interactions and data flows that occur during an
information query operation. Briefly, an inquisitor submits an Information Query Context
instance to a QS. The QS passes the IQC off to its resident RS who turns the IQC into a Native
Query Statement. This NQS, tailored specifically for the underlying data store, is submitted to
said data store and results in a Native Result Set object being returned to the RS. The RS
converts the NRS object into a set of Phoenix information instances that it then sends to the DS
for delivery to all identified query consumers, in this case only the original inquisitor.

Figure 21 depicts the operations required for a Phoenix query to execute and deliver its result set
to a consumer. This example assumes that the actor issuing the query is also the only consumer
of the result set.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
35

Figure 21 - Query Execution

Conn Connector Impl Implementation

DS Phoenix Dissemination Service int The result set size.

I Phoenix Information instance OM Output Manager

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
36

IIC Information Input Channel QS Phoenix Query Service

IOC Information Output Channel RS Phoenix Repository Service

IQC Phoenix Information Query Context

An actor begins a query operation by constructing an Information Query Context and submitting
it to a Query Service via a control channel (connector & stub). The Query Service will forward
this context to applicable Repository Services based on its interior implementation logic or policy.
The Repository Service then submits the query to one or more of its configured repository
implementations for execution. Again, this decision is based on the service's implementation
logic or policy. If executing a synchronous query, the repository implementation(s) will return a
result set size to the Repository Service, which will aggregate the result set sizes of all applicable
repository implementations and return that number to the Query Service. The Query Service will
likewise aggregate the result set sizes of all applicable Repository Services and return that total
size to the issuing actor as the total result set size. If the query was executed in asynchronous
mode, the repository implementation will return zero for a result set size as soon as the query
has been submitted for execution. The same chain of aggregation applies but the result is always
zero and the query (or queries) may or may not be completed when the zero value is returned to
the issuing actor. When the query has completed, the repository implementation retrieves the
result set one information instance at a time. Each information instance is stamped with the
identifier of the query and then sent to the Dissemination Service for delivery to the query
consumers, in this case the actor issuing the query.

Querying Data Stores

Current repository interface implementations support queries over single information types, but
not over sets of zero or more than one. A query with a null or unspecified expression will return
all information instances of the designated type. Future work will include the abilities to query
over all information types by not specifying a subset of types to apply the expression to and to
specify specific sub-sets of information types to apply the expression to.

Stream Brokering Service

This Service offers the capability of registering producers as stream sources, and consumers as
stream sinks. The Stream Brokering Service (XBS) wraps the functionality of Connection Service
with Stream administration. Membership of streams, including their publication source's
metadata and identity, consumers using stream-based expressions, and the registration of the
stream definition itself, are all part of the Stream paradigm for this service. Data does not flow
through this service, data is routed through a connection service, but the control and
management operations for a stream are administered through this service.

This service is used to simplify the operations of stream management, as well as the intricacies
of the connection service, by providing a wrapper which does much of the work for the producer
and consumer in terms of stream registration being converted to a connection group definition, a
consumer and source being registered and added as members of that connection group based on
the stream expression or their stream Id. The main purpose of this service however, and why it
is typically used, is because it uses the ontological terms and language of streaming so that the
operations of the connection service can be much easier related to, and also specialized for
streaming functionality. The stream channel types allowed are information, frame, and byte.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
37

To see more specifics on this service and its methods, please consult with the documentation for
the main stream brokering service interface. StreamBrokeringService

Figure 22 - Stream Brokering Service Use

Stream Discovery Service

This Service offers the capability of registering and querying streams. A Stream is an abstraction
of a set of data, which could be in many formats (e.g. Frame, Information, Byte, etc.) A Stream
which is registered may have an inactive or active state, and is stored with the stubs of services
which are relevant to accessing or joining the Stream. The Stream queried for will be brokered
upon immediately. Eventually there may be a capability to be notified of stream
activations/registrations via an Event Notification mechanism. The Stream Discovery Service
(XDS) allows for multiple expression processors, so Services could be registered as property-
based, XPath, or other Stream Discovery Contexts, and then found when others perform a query
using that same expression processor for which the Stream metadata was formatted.

The Stream Discovery Service is initially very similar to a UDDI registry, where an uploaded
entry has a name, description, and metadata, associated with it, which queries are matched
against, with results returning more useful information, such as finding the location of the
repository where the Stream is stored, if it was stored at the time of its publication. A Stream
may be registered with a variety of attributes, including the channel type which the data will
conform to, the metadata for the stream (which all data published to the stream must comply
with) and other context attributes.

To see more specifics on this service and its methods, please consult with the documentation for
the main stream brokering service interface. StreamDiscoveryService

Subscription Service

The Subscription Service (SUS) is a Tier 2 Information Management service that provides a
subscription registration interface to actors, both edge and internal. Subscription registration
may be local or remote. Multiple SUS instances may be registered with another SUS, allowing for
operations such as load balancing and subscription fan-out. The Subscription Service relies upon
its internal Service Multiplexor for determining what subscriptions are registered with which

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
38

other SUS instances known to it, if any. Figure 23 shows a simple depiction of the two SUS
configuration options.

Figure 23 - Subscription Service Use

C Consumer

IBS Information Brokering Service

SUS Subscription Service

Tier 3 - Information Management Services

Tier 3 services provide basic information management functionalities, but provide interfaces that
are not exposed to edge actors. These services are available only through other service proxies
and are not intended to provide direct channel support to the edge actors. Tier 3 services are:

• Repository Service

• Stream Repository Service

Repository Service

The Repository Service (RS) has been implemented as a configurable class that can support
multiple data stores at the same time, using the same code. A Repository Interface has been
defined that describes the standard interface for interacting with a data store. This interface is
used by the RS as the transparent facade for all data stores making the RS code 100% reusable
amongst data store technologies, assuming that an implementation exists for the data store
technology that conforms to the Repository Interface. i.e. An implementation of a Repository
must exist that supports Berkeley DB XML if the RS is going to support storing and retrieving
information in and from a Berkeley DB XML data store.

Figure 24 - Repository Service

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
39

I Phoenix Information instance RS Phoenix Repository Service

NI Native Insert Statement (i.e. SQL, etc.) SS Phoenix Submission Service

P Producer

Configuring the Repository Service

The Repository Service has been designed to be configured one of two ways, either as a
standalone service or as part of a service orchestration with one or more Information Type
Management Services (ITMS). Both of these configuration options require that the RS receive a
complete copy of the information type definition to ensure that the underlying data store(s)
create the corresponding data table structures correctly. For example, a database (RDBMS, NXD,
etc.) requires the schema for metadata for an information type so that it can create the tables
with correctly formatted rows and columns (or their equivalent) based on metadata field type
(integer, string, etc.).

The stand alone service configuration contains a list of complete information type definitions for
the information types to be stored by the RS. This configuration may be used in concert with the
service orchestration configuration if desired. Stand alone RS instances are configured through
the use of Spring configuration files. Stand alone configuration options do not supersede the
service's ability to load an actual service context, containing a raw copy of service state. If a
service state file exists, and is explicitly loaded by the RS or its service container, that saved
state will override the configuration settings provided by the Spring configuration file. It is
important to note here that the Base Implementation of the RS does NOT automatically attempt
to load a service state file. The service container or some other external mechanism to the Base
Implementation RS class must configure the service instance correctly and explicitly invoke the
load function after service creation and prior to service start up.

The service orchestration configuration depends on the ITMS instances telling the RS which
information types to store via connector and stub invocations. This configuration method is
preferred for SOA deployments such as Enterprise Service Bus (ESB) or federated information
spaces. Changes made to the RS configuration, i.e. what types it is storing, will supersede any
that were loaded from a service state file. This is due to the fact that configuration via service
orchestration requires that all services be instantiated AND successfully started prior to
orchestration. This configuration option also dictates that all RS instances being orchestrated
need to be started before the available ITMS instances. This is required because, on start up, the
ITMS instances will attempt to load any pre-configured type definitions. If any are found each
ITMS will attempt to invoke a control method on its known RS instances to tell each to begin
storing information of those types. See the Information Type Management Service, Orchestration
with Repository Service section for more details.

Archiving Persisted Information

Persisted information may be archived by invoking a specific method on the RS interface. The act
of archiving information will pull persisted information out of the repository, write it to a set of
output channels whose end points are the archival services or systems (i.e. the services or
systems that will perform the actual archiving of the information), and delete the archived
information from the repository. Archiving of information is initiated via the use of an instance of
the Information Query Context interface, allowing for great flexibility to be exposed to the actors
invoking the archive operation. Part of this context is a set of channel contexts that define the
query consumer channels. These channels are the previously mentioned set of output channels

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
40

for the archival services or systems. These services or systems may, but are not required to,
include another Phoenix RS. If no consumer channels are defined for the query context of an
archive operation the Base Implementation RS will assume local archival operations and add a
custom output channel that is basically a channel wrapper for a File Repository instance. File
Repository was chosen as the default information archive technology because it uses XStream to
write and read information instances to and from XML files in a loss-less fashion. The use of
XStream makes the saved information instances agnostic and able to be read by XStream or any
other XML processing application. If not using XStream, some development must be done to
interpret the received XML, but no interpretation of third party proprietary formats or anything of
the like need to be done.

Repository Interface

The Repository Interface standardizes the methodology for interacting with underlying data
stores. It allows the RS to interact with disparate technologies, such as Native XML Databases
(NXD) and Relational Database Management Systems (RDBMS), in a transparent manner. This
interface defines methods for creating and destroying and writing to and reading from collections
of information. The current set of supported data store technologies is as follows:

• File Repository

• Typed File Repository

• Berkeley DB XML Repository

• Mongo DB Document-Oriented Repository

File Repository

The simple file repository is a wrapper for straight file input and output operations using either
the Local or a Network File System (LFS or NFS, respectively). Information instances are all
stored in a single collection that maps to a set of file system folders. The File Repository is
initialized to contain a single folder named "0" that can contain a configurable number of files.
Each information instance is a single file. Once the maximum number of files is reached for a
folder, the File Repository automatically creates a new folder, numbered in sequence (i.e. 0, 1, 2,
3...) and starts storing information instances there. This repository can continue to operate until
the memory space afforded by the disk drive is exhausted. Information instance files are named
using the instances information context identifier suffixed with a ".xml" extension. Information
instance objects are converted to an XML representation by the XStream library. The File
Repository does support the deletion of specific information instances, identified by information
context identifier. Since the search mechanism (described below) is rather simplistic, delete
operations can be expected to consume CPU time in direct proportion to the total number of
records being stored by the repository.

The File Repository supports a very simple query language: context identifier matching. This
means that to query a File Repository you must supply a set of information context identifiers.
The File Repository will then search its folders for a file with that name. Since there is no
directory of file names mapped to paths and no notion of typed information collections, searches
of File Repository data stores can be expected to rise proportionately with the total number of
records stored by the repository. Attempting to retrieve the number of records from a File
Repository will return the total number of records being maintained, but since typed collections
are not supported, no break down by individual information type is provided.

Since the File Repository is LFS and NFS based, it inherits the strengths, weaknesses, and
limitations inherent to the hardware and software the file share is based upon. For instance, the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
41

maximum number of files allowed in any single directory is directly dictated by the file share's
controlling Operating System and any policies placed upon it.

Typed File Repository

The Typed File Repository extends the simple File Repository and adds support for typed
collections of information. As such, query and deletion performance should be improved over
that of the simple file repository, providing that the correct parameters are provided in the
operational context to scope the query or delete operation to a sub-set of information types.

Berkeley DB XML Repository

The Berkeley DB XML Repository, hereafter referred to as the Berkeley Repository, provides an
interface to the Berkeley NXD. This repository supports the full range of XPath and XQuery
operations supported by the Berkeley database. While Berkeley DB XML supports applying
XQuery over multiple collections, only XPath and XQuery expressions over a single database
collection are supported by the Base Implementation. For the foreseeable future, any query
submitted to a Berkeley Repository must be typed with a single information type and all other
queries will result in a thrown exception. The current supported version of the Berkeley DB XML
Database is 2.5.13. Berkeley DB XML is an Oracle product built on top of the Berkeley DB name-
value pair database. Berkeley DB XML is a native C++ library with a Java bridge also provided by
Oracle as part of the Berkeley DB XML distribution.

Berkeley DB XML has been shown in the past to be buggy and crash-prone for hazy or
indeterminate reasons somehow related to memory management and allocation. The Berkeley
Repository obviously inherits these problems wholesale and use of this repository should be
limited to research and development efforts. Special care must be taken to ensure that the
DB_CONFIG file does not contain values that require a larger portion of memory than there is
available. Cryptic technical error messages add to the burden of dealing with this database as
well.

One should ask, what with all these issues and concerns, why do we provide a Berkeley DB XML
repository implementation? The answer is simple: It was the best Open Source NXD solution
available when the Base Implementation repository technologies were evaluated. Others, such as
Sedna and eXist are available as Open Source, but neither matches the shaky robustness of
Berkeley when dealing with collections of information. Neither Sedna nor eXist support as many
XML, XPath, and XQuery related features as Berkeley DB XML either. In addition Sedna, while
Open Source and possibly a little more robust than Berkeley DB XML, is Russian product, making
it virtually impossible to run on an accredited, or even non-accredited, government network.

Berkeley DB XML Performance and Fault Tolerance

Several configurable performance measures have been incorporated into the Berkely DB XML
implementation of the Repository Service. To mitigate database corruption, an internal write
buffer has been integrated to temporarily store information on disk and commit that information
to the appropriate Berkeley repository when a buffer threshold is reached or a predetermined
time limit has been exceeded. Both the save rate and the time to live for the buffer are
configured through the BerkeleyRepositoryContext (via the get/setSaveRate() and
get/setWriteTimeout() methods).

The Berkeley repository implementation has been optimized to handle larger repositories for a
given information type. As the number of messages for a given information type exceed a
predetermined threshold, the Berkeley repository will create a new container for the information

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
42

type. The threshold that instructs the Berkeley repository to create a new container is managed
through the BerkeleyRepositoryContext via the get/setMultipleContainerThreshold. This threshold
should be adjusted based on message size and frequency.

Berkeley DB XML Configuration

The Berkeley DB XML database, hereafter referred to as BDBXML, is configured by the settings
stored in a file named "DB_CONFIG" which is required to be located in the home directory of the
BDBXML instance being run. Each BDBXML instance has a configurable home directory that it
uses to store its required files and folders, the DB_CONFIG configuration file being one of these.
If no DB_CONFIG file is located the hard coded default settings are used, which often result in
problems at runtime.

The most common use of the DB_CONFIG file is to set the amount of physical memory allocated
to Berkeley DB XML. This is configured using the 'set_cachesize' entry in the configuration file.
This setting requires three parameters: the number of gigabytes allocated, the number of bytes
allocated, and the number of cache segments to break the allocated memory into. An example
entry is shown below.

set_cachesize 0 268435456 1

Where the number of gigabytes is set to zero, the number of bytes is set to the equivalent of
256MB, and the number of cache segments is set to one. The next most common set of
configuration settings involve locks, lockers, and lock objects. "A 'locker' is defined by Berkeley
as a kind of database management container. A locker owns 'locks' which enact physical locks on
pages of the database. Lockers are associated with containers, which own database handles, as
well as documents, which may own cursors." [1] An example entry set for lockers, locks, and
lock objects is as follows:

set_lk_max_lockers 20000

set_lk_max_locks 20000

set_lk_max_objects 20000

For more on lockers, locks, and lock objects reference the Berkeley Overview.

The Berkeley repository implementation comes with a few caveats though.

1. Berkeley DBXML inserts information very quickly, even while indexing multiple fields of
varying types, but query is not nearly as optimized. Queries can typically take minutes to
return a result set, even when constrained to indexed fields.

2. The Berkeley Repository is known to cause a total freeze of all VM operations when run
as part of a suite of services deployed in a Java Service Container (JSC).

Mongo Repository

MongoDB is a document-oriented NoSQL database that allows users to store and retrieve
unstructured information without requiring a database schema. NoSQL data stores are highly
flexible, like a XML repository, while providing functionality that is commonly found in traditional

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
43

RDBMS systems. The MongoDB implementation adheres to the NoSQL concepts while focusing on
document-based information while providing distributed storage and retrieval of information.

Running the Daemon

In order for the MongoDB repository implementation to function properly, a daemon process
must be running. The daemon process is a native service (binaries exist for Windows, Linux, OS
X, and Solaris) that can be configured to run in a distributed fashion. The daemon process can be
installed as an OS level service or it can be run in place by invoking the mongod executable.

Storing Information

The MongoDB repository service expects to receive XML messages as the information to be
stored. The XML is converted into a JSON like structure and stored in MongoDB. The conversion
from XML to JSON is generic and as a result the conversion process does not delineate between
numeric and string values. It is possible to store any type of unstructured information.

Querying Information

Queries (i.e., experessions) are formed using a dot notation to traverse a document heirarchy.
An XML snippet is listed below to demonstrate the MongoDB query syntax:

 <x>
 <y>
 <z>
 Some Text
 </z>
 </y>
 </x>

Citing the XML above, if a user wanted to query for the phrase "Some Text" the following dot
notation query would be created: x.y.z = "Some Text". With respect to the repository service,
the predicate within the InformationQueryContextInterface must be stored as a BasicDBObject
via the setQueryObject(). For more information on the construction of a MongoDB query refer
to the MongoDB Java Tutorial located at: http://www.mongodb.org/display/DOCS/Java+Tutorial

Deleting Information

The semantics for querying information and deleting information are the same.

Known Limitations

The converter that transforms XML to a JSON structure cannot distinguish numeric from
alphanumeric data. This prohibits the use of numeric based operators (e.g., <, >, etc) since all
data is treated as alphanumeric.

Future Work

Devise a sophisticated XML to JSON conversion process that is intelligent enough to determine if
an attribute or node value is numeric vs. alphanumeric. Additionally, testing should be done to
explore the possibilities of running the MongoDB daemon in a distributed fashion.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
44

Stream Repository Service

The Stream Repository Service inserts frames into its associated data store(s). Although these
interfaces are consistent with the general repository service, some methods are not functional,
as the stream repository service is based on frames rather than information, which means that
a) there is no type associated with the data, although it is correlated with the type associated
with the stream context, b) there are no contexts for the frames, and c) frames are based
around streams, which means that the repository should have streams as representative of the
types of data, encapsulating methods which can retrieve the schema definitions for the stream,
metadata content, and payload content. There is no actual insert frames method defined as part
of the service API. Instead, the Repository Service receives frames over frame channels, which it
reads internally, making insertion an internal process. This decision was made to ensure the
physical separation of control versus data interactions. The frame storage interface is an
extension of the frame retrieval interface. This follows the assumption that if you can write to a
section of disk then you are implicitly able to read from that section as well, i.e. if you can write
to the data store, you should be implicitly able to read from the data store as well. This service
also provides the ability to delete records from the database. The Phoenix architecture defines
two types of data stores: repositories and archives. Repositories are low-latency high-access
data stores that should support higher data read and write rates. Archives are expected to be
higher latency, low access data stores that may not be able to support high data rates but can
store much more data than repositories. A possible implementation strategy would be to store
recent data in a repository while aging data would be moved to an archive. This service may be
implemented in such a way that it can be used as a wrapper for existing legacy data stores.

To see more specifics on this service and its methods, please consult with the documentation for
the main stream repository service interface. StreamRepositoryService

Tier 4 - Administrative Services

These services are potentially optional services that provide backbone functionalities that may or
may not be crucial to information management operations for a specific deployment of the Base
Implementation services. For example, a set of Base Implementation services that are targeted
to be deployed directly onto a camera pod (i.e. NCET services) may not require any service
brokering or authorization capabilities and simply assume that all interactions are authorized and
that all services are statically configured to know how to interact with each other. The set of
Administrative Services includes:

• Authorization Service

• Service Brokering Service

• Session Management Service

Authorization Service

The Authorization Service (AS) is the security enforcement point for the Base Implementation.
The implementation of this service is simplistic: it authorizes either everything or nothing. This
design decision was made because a Base Implementation of a service should NOT be tied
directly to any particular set of technologies.

Service Brokering Service

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
45

The Service Brokering Service (SBS) performs two basic functions: allows services to register
themselves, and allows services to search (broker) for other services (stubs) for their own use.
As most of the services are, the registration and evaluation of the services specifications are
configurable. It's configurable in the attribute that can be used, as well as the way evaluation is
done. The default set of attributes are listed below and it uses context query evaluator (contains
a map of the attributes) to do brokering. When multiple fields are used for a search the SBS will
assume an intersection operation upon the results (i.e. the multiple fields are conjoined using the
'AND' operation).

Configuration

Each service has two attributes relates to service brokering: 1) register with the SBS and 2)
broker for services using the SBS. Set these values accordingly for each service.

Common Context Attributes

Below is a list of common context attributes that are in a Service Descriptor and can be queried
over. They are only logically broken into two main groups: static (S) and dynamic (D). Static
ones will be refined into attributes that either never/hardly change and ones that don't change
that often, but not enough to be called dynamic (they will be called delineated with a *). This list
of common attributes will be shared across all services. Then each service will have specific
attributes only associated with that service. The dynamic ones below are currently just for review
and discussion. They will not yet be part of the service descriptor or thus for brokering. The
current list of attributes can be located in this class:
mil.af.rl.phoenix.service.serviceregistration.ServiceDescriptorContext. Ones with a # below are
the only ones that are currently being used in the system, and are common attributes (and in
the ServiceDescriptorContext class).

Static

• # HOST_ID: String that is the name or ip of the machine (Ex: 128.132.60.71)

• DOMAIN_ID: String that is the name of the group of community or interest (COI).

• # SERVICE_NAME: String that is the name of this service (Ex: MainSubmissionService).

• # SERVICE_TYPES: List of Service Type Strings this service implements (Ex:
SUBMISSION).

• # SERVICE_CONTEXT_ID: String that is a GUId (Ex:
6a2826ccf3cc9a557c3e479a4259f509).

• # SERVICE_START_TIME: DateTime in the format of example yyyy-MM-
dd'T'HH:mm:ssZ (Ex: 2010-07-19T09:10:31-0400)

• *# CONNECTOR_PROTOCOLS: List of protocols. (Ex: RMI, PIC)

• # *INFORMATION_TYPES: List of current information types supported by this service
(Ex: mil.n.ship)

• *# CHANNELS: List of current input channels for the service in the format of:
channel_type:app_protocol_id:host_address:host_port:transport_protocol_id (Ex:
serial:127.0.0.1:3149:tcp)

Dynamic

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
46

• NUM_CONNECTIONS: Int that is the number of connections to this service

• NUM_UNIQUE_CLIENT: Int that is the number of unique clients to this service

• CURRENT_RATE

• CONNECTIVITY_TIME

• UP_TIME

• NETWORK_AVG_AVAILABILITY

• TOTAL_RAM

• AVAILABLE_RAM

• NUM_CPUS

• CPU_SPEED

• CPU_PERCENT_USED

• SERVICE_AVG_AVAILABILITY

• OS_NAME_VER

Here is a list of some of the Phoenix Services and some of there possible service specific
attributes:

Submission Service:

• NUM_CURRENT_PUBS

• AVG_PUBS_SEC

• INFO_BROKERS_URIS

• REPOSITORIES_URIS

Information Broker Service:

• CURRENT_PREDICATES_AND_TYPES

• RECENT_PAST_PREDICATES_AND_TYPES

• BROKERING_TECHNOLOGIES

Dissemination Service:

• DISSEMINATION_TECHNOLOGIES

Repository Service:

• REPOSITORY_TECHNOLOGY

• NUM_TYPES_SUPPORTED

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
47

• TOTAL_NUM_OBJECTS_STORED

• CURRENT_QUERIES_LIST

• NUM_PAST_QUERIES

• AVG_RESPONSE_TIME

• AVG_DESIRABILITY_INFO_TYPE

• AVAIL_DISK_SPACE

Session Management Service

The Session Management Service (SMS) is responsible for creating and maintaining sessions for
actors. A session is intended to contain things like the information types that an actor is
submitting, subscribing to, and querying over as well as any other items that an implementation
may want to associate with a session and track. The SMS is the book keeper service that
maintains the registry of all active and suspended sessions.

Support Packages
An alphabetical listing of the supporting packages for the Phoenix Base Implementation:

• Common Utilities

• Example Applications

• Example Config Applications

• Java Service Container

• Performance Applications

Common Utilities

This is a supporting project that has been developed by AFRL in coordination with the Base
Implementation. It contains many utility functions that would otherwise have to be spread
throughout the Base Implementation. The Common Utilities project consists of nine component
packages:

• Benchmark

• Buffering

• Common

• Database

• Encoding

• GUI

• Logging

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
48

• VO

• XML

Benchmark

The benchmark package provides classes that perform some level of benchmarking or metrics
gathering, like timed events for average rate calculations.

Buffering

TimerBasedBuffer

This class is used to provide a common buffering engine and interface. The buffer's design
utilizes Java generics to provide an easily extensible utility class for buffering Java objects. This
class works off the Template Design Pattern the class itself being abstract with the
doSpendBuffer(List<E> spendBuffer) method. Only sub-classes know what to do with the list of
objects and handle them appropriately (i.e: spend them). The properties of this class (the way
that is works), is governed by some default attributes, that can be set using a property file, see
TimerBasedBuffer.properties.

TimerBasedBuffer.properties

This file governs how buffering will work. The file location is relative to the directory of where the
application has started from. If it does not find it in that root directory, it will search its parents
path, until it's at the root of the OS.

Here are the list of properties that can be set. NOTE: More about these are the appropiate values
can be seen in the javadocs for this class.

• maxBufferSize - The maximum number of elements the buffer can contain.

• spendSize - The Maximum number of elements that will be "spent" from the buffer
every Spend Interval. This must be > 0 and <= Max Buffer Size.

• spendEagerness - The amount of time in milliseconds the spend thread will wait before
attempting to spend Max Spend Size items from the buffer.

• sleepOnMaxBufferSizeTime - If the buffer is already at max size when add() is called,
the call to buffer will be blocked for the specified number of milliseconds. If after that
time the buffer is still full the call will be blocked again for the same amount of time. This
blocking behavior continues until there is room in the buffer for the new item.

• sleepOnAddToBufferTime - Blocks on all calls to add() for the specified number of
milliseconds (simple throttling).

• decimateByEvery - Specifies that only every n calls to buffer should actually result in an
item being added to the buffer. For example if you specified a value of 5. Only every 5th
call to add() would result in the items passed in being buffered.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
49

• maxBufferSpendSizeLogCount - When enabled (!= -1) the Buffer has reached with-in
a spend size of its Max Size, log it as instrumentation data.

• maxBufferFull - When enabled (== 1) logs when the buffer becomes full and how long
it took it to become full. NOTE: maxBufferSpendSizeLogCount must be enabled for this to
be enabled.

• sleepOnRecoverableSpendFailure - This is the time in milliseconds to wait after a
failure has occurred before it tries to spend again [call spendBuffer()]

• showLogGUI - Show a buffering GUI in which it charts the size of the buffer against its
max size over time.

Each of the properties above should be prefaced with either the name of the concrete Buffer
Class name or the name you gave the buffer upon instantiation (constructor call) followed by a
period '.' ending with that property name. So, by default if the class name is
SubmitTimerBasedBuffer.java, then values in the property file could look like:

 SubmitTimerBasedBuffer.maxBufferSize = 5000
 SubmitTimerBasedBuffer.spendSize = 100
 SubmitTimerBasedBuffer.spendEagerness = 10
 SubmitTimerBasedBuffer.sleepOnMaxBufferSizeTime = 10
 SubmitTimerBasedBuffer.sleepOnAddToBufferTime = 0
 SubmitTimerBasedBuffer.decimateByEvery = -1
 SubmitTimerBasedBuffer.maxBufferSpendSizeLogCount = 1
 SubmitTimerBasedBuffer.maxBufferFull = 1
 SubmitTimerBasedBuffer.sleepOnRecoverableSpendFailure = 2000
 SubmitTimerBasedBuffer.showLogGUI=0

But, you could have 2 or more instance of the buffer in your code, and want to have different
settings for each, so you can have a 'meaningful buffer name', like:
InputSubmitTimerBasedBuffer and 'OutputSubmitTimerBasedBuffer'. So, you would have 2 sets
of property values in the file, each having its own set of values.

Buffer Values

 maxBufferSize:
 0 - This will make buffering NOT really buffer at all (its a synchronous call). It will act as a pass-thru.
 Meaning, it will add to the buffer and we alone will spend immediately (no threads),
 thus like a real blocking synchronous call.
 > 0 - Size of the buffer
 < 0 - [ERROR]

 spendSize:
 > 0 - Size to spend at a given time
 <= 0 - [ERROR]
 NOTE: spendSize > maxBufferSize - is also an [ERROR]

 spendEagerness:
 > 0 - Time in mills to call spend on a timer
 = 0 - [WARNING] - Will continue to spend immediately. Can do, but probably not wanted
 < 0 - [ERROR]

 sleepOnMaxBufferSizeTime:
 > 0 - Time in mills to sleep and wait for some of the buffer to be spent

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
50

 <= 0 - Will not sleep, but will remove one, allowing the next to be added (revolving buffer)

 sleepOnAddToBufferTime:
 > 0 - Time in mills to sleep on all adds to buffer (simple throttling)
 <= 0 - Will ignore and NOT sleep on all adds

 decimateByEvery:
 -1 - Do NOT decimate {Always add to the buffer, like normal}
 0 - Always decimate {Decimate every one, never add to the buffer (like stopping a pub'bing sensor)
}
 >= 1 - We WILL decimate (keep) every n'th one, all the rest are dropped on the floor.

 NOTE: 1 means decimate by 1 (like -1), so we keep every one, thus always added to the buffer, never
dropped

Common

This package contains raw utility functions that can be applied to many Java objects. This section
will break the package down by implementation class and provide a brief overview of the
functions that each class offers.

EmptyUtils

This class provides methods for checking if a given object is empty. These methods all perform
null checks on the given value first and only if they are not null will the actual check for
emptiness be performed. These methods allow developers using Common-Utilities to remove
many null checks from their own code, thereby cleaning it up a bit.

FileUtils

This class provides some common file utilities including reading and writing files, property files,
finding/locating files, and deleting files.

MultipleValueMap

This class is a synchronized map implementation that allows for multiple values for any given
key.

ObjectAnalyzer

This class provides methods for converting any Object into a human readable string and for
comparing any two given objects to each other.

PropertiesUtils

This class provides methods for converting java.util.Properties instances to strings and vice
versa.

Serializer

This class provides methods for generic serialization and de-serialization of Java objects to and
from byte arrays, respectively.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
51

SortedProperties

This is an extension of the java.util.Properties class that returns the key names in alphabetical
order through an overloaded 'keys()' function.

SpringUtils

This class provides a method for locating a Spring configuration file given a file name, path, and
bean name. This function accepts wildcarded (Example:
**/src/text/resources/phoenix_beans.xml) or absolute paths. The file being referenced must be
on the Java classpath in order to be found by this function. Once found, the file must contain the
given bean name or an exception is thrown.

StreamUtils

This class provides some general streams utility functions like copying streams or reading them
into a String variable.

StringUtils

This class provides a method for discovering if a StringBuffer ends with a given suffix.

Utils

This class provides some general utility methods including converting hexadecimal values to byte
arrays, converting strings to enumeration values, and retrieving the class name from a fully
qualified class name.

Database

This package contains classes whose methods provide some common functions consistent across
many Java Database Connection (JDBC) clients.

Encoding

This package contains classes and methods for encoding and decoding objects and strings to and
from Base 64 byte arrays, respectively. It also contains a class for generating random GUIDs
based on the Java MD5 has generator.

GUI

This package contains methods for constructing form- or grid-style layouts with SpringLayout.

Logging

This package defines a specific Apache Log4J logger class named OIMLogger, its specific logging
levels, factory, and file appender. It also contains a specific implementation of a Log4J network
logger service.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
52

The log4j service is run to collect logging events (messages) that are sent over a specific port.
We use this to collect information from the pub/sub Performance applications and JSC in order to
place all metric log statements (and all other level), so that they are located in a single log file
for parsing.

The service is started/run from the performance apps, since that is where it will be mostly used.
To start it, run this: \base-implementation\performance\log.bat

Configure Service

This script runs the ant build script calling the 'log' ant target. That target runs the
mil.af.rl.phoenix.util.logging.net.OIMSocketServer class. This is really just a wrapper class that
extends the org.apache.log4j.net.SocketServer class. We have this class setup, just in case in
the future we want to control the log events (messages) that come in.

To change the port that the log4j service runs on, change the log.service.port ant variable in the
file or override it via ant properties. The \base-
implementation\performance\src\main\resources\log4j-service.xml configures how this service
will handle log events/messages it received on a socket.

Configure Client

To change the host or port used for the performance apps, edit it's \base-
implementation\performance\src\main\resources\log4j.xml file. If you want to add this to an
existing file, just copy/paste the below in:

 <appender name="SOCKET" class="mil.af.rl.phoenix.util.logging.net.OIMSocketAppender">
 <param name="RemoteHost" value="127.0.0.1" />
 <param name="Port" value="8887" />
 </appender>

The OIMSocketAppender just extends log4js' SocketAppender class. We could at somepoint
chance the functionality here, and now we are setup for that.

VO

This package contains some basic utility methods for value objects.

XML

This package contains some basic XML functions and a simple XML validator that uses the ISO
RELAX verifier.

Example Applications

The Example Applications are example Java applications that show the following Phoenix
concepts:

1. PublishClient.java (simplePub.bat)- shows how to submit information to the Phoenix
services via the Submission Service Stub.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
53

2. SubscribeClient.java (simpleSub.bat) - shows how to subscribe for information from
the Phoenix services via the Information Brokering Service Stub.

3. QueryClient.java (simpleQuery.bat) - shows how to query for information from the
Phoenix services via the Query Service Stub.

4. TypeClient.java (simpleTypes.bat) - shows how to add a type to the Phoenix via the
Information Type Management Service Stub.

Pre-Requisites

• There are Batch (.bat) and Shell (.sh) scripts available in the \base-
implementation\exampleapps directory. These both call Apache Ant to run the clients.
The Ant script (build.xml) is located in the same directory. Thus, Apache Ant is required
to run these example applications (see: http://ant.apache.org) for more information).
NOTE: These applications are compiled by using Maven when in the main/root level
pom.xml file in \base-implementation\ is executed.

• In order to run these clients, the needed Phoenix services should be configured and
running. The Java Service Container (JSC), has a pre-configured set a services and
workflow built in, and thus recommended to use while running these example
applications.

• The Type Client needs to be run before the PublishClient and QueryClient, if the persist
option is 1 and the JSC default configuration is changed not to create and store the type:
mil.n.ship.

• The ant script defaults to using the exampleapps.properties file, but this can be changed
via command line. Just run this command:
>ant -buildfile=buildSimple.xml -DpropertiesFile=my.properties sub

The Clients

The clients are intended to show how to use the services and perform those basic operations.
They can be copied and used appropriately. Some of them are parameterized somewhat, were
others are more hard-coded. Also, some of the clients have some metrics information. The
clients have some basic metric information related for publish, subscribe, and query times. The
clients parameters are set in the exampleapps.properties file and are read in using the Ant
build.xml script, and passed into java. The script and property files are located here: \base-
implementation\exampleapps.

1. PublishClient: Parameters are: number of Information Objects to publish, number of
types to use, and whether to persists the information to a database (1 or 0)

2. SubscribeClient: Parameters are: number of Information Objects to publish and number
of types to use

3. QueryClient: Parameter is: query string

4. TypeClient: No parameters

In general the flow of each client is the same, setup the RMI stubs, parse any incoming
parameters, setup any channels and/or callbacks, invoke the control calls on those stubs , and
then it should start publishing/receiving information. The TypeClient only invokes control
methods. It first checks to see if the type is already created, and if not, it creates it.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
54

Example Config Applications

The Example Config Applications are example Java applications that show the following Phoenix
concepts:

1. PublishConfigClient.java (pub.bat)- shows how to submit information to the Phoenix
services via the Submission Service Stub.

2. SubscribeConfigClient.java (sub.bat) - shows how to subscribe for information from
the Phoenix services via the Information Brokering Service Stub.

3. QueryConfigClient.java (query.bat) - shows how to query for information from the
Phoenix services via the Query Service Stub.

4. TypeConfigClient.java (types.bat) - shows how to add a type to the Phoenix via the
Information Type Management Service Stub.

Pre-Requisites

• There are Batch (.bat) and Shell (.sh) scripts available in the \base-
implementation\exampleapps directory. These both call Apache Ant to run the clients.
The Ant script (build.xml) is located in the same directory. Thus, Apache Ant is required
to run these example applications (see: http://ant.apache.org) for more information).
NOTE: These applications are compiled by using Maven when in the main/root level
pom.xml file in \base-implementation\ is executed.

• In order to run these clients, the needed Phoenix services should be configured and
running. The Java Service Container (JSC), has a pre-configured set a services and
workflow built in, and thus recommended to use while running these example
applications.

• The Config Type Client needs to be run before the PublishConfigClient and
QueryConfigClient, if the persist option is 1 and the JSC default configuration is changed
not to create and store the type: mil.n.ship.

• The ant script defaults to using the configapps.properties file, but this can be changed via
command line. Just run this command:
>ant -DpropertiesFile=my.properties sub

The Clients

The clients are intended to show how to use the services and perform those basic operations.
They can be copied and used appropriately. The client's parameters are set in the
configapps.properties file and are read in using the Ant build.xml script, and passed into java.
The script and property files are located here: \base-implementation\exampleapps.

In general the flow of each client is the same, setup the RMI stubs, setup any channels and/or
callbacks, invoke the control calls on those stubs, and then it should start publishing/receiving
information. The TypeClient only invokes control methods. It first checks to see if the type is
already created, and if not, it creates it.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
55

These config clients are governed by a Spring Framework (from http://www.springsource.org)
config file. This file contains all the necessary information for each of the 4 clients. It contains
the client configurations for publishing, subscribing, querying, and creating types. The contents
of each client configuration is governed by that clients java methods (javadoc), as the Spring
Framework uses Inversion of Control (IoC). Each bean in that file represents a client that is
being created and configured.

Spring Framework Links:

• http://www.roseindia.net/spring

• http://courses.coreservlets.com/Course-Materials/spring.html

• http://static.springsource.org/spring/docs/2.5.x/spring-reference.pdf OR

• http://static.springsource.org/spring/docs/2.5.x/reference/index.html

Java Service Container (JSC)

The Java Service Container (JSC) is a very lightweight Plain Old Java Object (POJO) service
container. The JSC holds a list of Service Managers, and each of these contains a service
instance and a connector manager for that specific service. Each Service Manager runs as a
separate and distinct thread of execution, able to be managed and prioritized like any other Java
thread.

The JSC is not intended to replace an application server. Instead it provides a convenient and
simple framework to configure, start, stop and lightly manage services in a single JVM. In fact,
one or more instances of the JSC could live within an application server. The JSC takes a list of
pre-configured contexts and services. The JSC relies on an external component to configure the
services and other entities that it maintains. The JSC provides a common, simplistic interface for
managing and retrieving service instances by service name or type.

Building the JSC

The JSC runtime libraries are gathered and setup during the execution of the Maven build
through the use of the copy-dependencies plugin. This tells Maven to look at all the
dependencies (jar's, dll's, so's) of the JSC and copy them into the default dependency directory:
\base-implementation\javaservicecontainer\target\dependency. The Ant build script that runs
the JSC is configured to use this directory as its home directory. Other required files such as the
Spring and Log4J configurations are located in the /target/classes directory.

Configuring the JSC

Spring Loaded JSC

Now, loading the JSC with pre-configured services might seem cumbersome and trite assuming
you had to create a JSC loader that had hard-coded values for the contexts and service settings.
But, enter stage left to save the day, the Spring Framework (from http://www.springsource.org)
and the SpringJSCLoader provide a dynamically configurable setup for the JSC and its services.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
56

The SpringJCSLoader class itself is pretty short and sweet. It takes an optional file name that
defaults to 'phoenix.service.jsc_beans.xml'. This Spring configuration file is loaded into the
Spring Framework and returns a fully configured and ready to use JSC. When used as the main
class for starting/loading JSC, it even starts all the services (meaning it looks over all the
services and calls it's start() method).

Spring Configuration File ('phoenix.service.jsc_beans.xml')

Spring works off the bean specification of getters/setters (mostly setters). The SpringJscLoader
class takes a file that corresponds to the Java API of the JavaServiceContainer class. An example
JCS Spring configuration file is located here: phoenix.service.jsc_beans.xml.

A quick glance at this file reveals a myriad of complicated XML nodes. Do Not Panic There is a
method and an organization to the madness!

First and foremost look at just the 'bean' node with the ID of "phoenixJavaServiceContainer".
This is the actual JSC Java class that will be configured with Service Manager instances. Next
notice that this node contains one property named "services" that is itself a list of Service
Managers. Each of these Service Managers are linked to a service 'bean' node in this same
configuration file. Each Service Manager node also defines zero to n connectors for its
corresponding service. Thread priority for services is also set within each service's Service
Manager configuration node. It is also important to note here that the order that the Service
Managers are defined in directly corresponds to the order that the JSC will start the individual
services in.

Listed immediately following the JSC node will be the set of individual service instance
configuration nodes. In the provided example configuration file, all service instance ID's end with
the moniker 'Service', but this is not required. Each service configuration node contains the
configuration node for its specific Service Context instance, the list of configuration nodes for the
serivce's available input channels, and any other settings (stubs to connect to other services
with, etc.) pertinent to the service.

Pre-Configured Information Type for Example Applications

Both the Repository and Information Type Management Service's are pre-configured for the
type: mil.n.ship. This also the full suite of Example Applications to be run without first running
the TypeClient Example Application.

Depends Service Order (dependsOnServiceNames)

The Service Manager has get/set dependsOnServiceNames methods that takes a list of strings.
These lists of strings are the names of the other services that the given service (e.g. its service
manager) are dependent upon starting first. So, list the service names of those services that
needs to be started first, before the given service can be started. Normally, this would be those
services that a service has stubs setup for, as well as channels configured to them. The JSC will
figure out the correct start order that the services should be started in.

Running the JSC

Located in the root directory: \base-implementation\javaservicecontainer, there are two scripts
(jsc.bat and jsc.sh) that will start the JSC on Windows and Unix respectively. They both call an
Ant script that calls Java to run the main method in the SpringJscLoader class. Or you can use a
command prompt to navigate to the home directory and enter '>ant' to run the default Ant

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
57

target 'run.Jsc'. The Ant variable 'jsc.toload.file' defaults to 'phoenix.service.jsc_beans.xml' tells
the Spring what configuration to load into the JSC. An example of changing the file name that is
used for loading the JSC via the SpringJscLoader class is:

 ant -Djsc.toload.file=my_jsc_beans.xml

In order to run a self sustained version (one that won't be changed from one build to the next) of
the JSC, you will probably want to copy the directory structure into another location, so that the
jars and files do not get replaced by executing a Maven 'clean' command. This will ensure that
you are guaranteed the same libraries between JSC runs. You will probably need to change the
Ant script if you still want to use Ant to kick-off the JSC.

Spring Framework Links:

• http://www.roseindia.net/spring

• http://courses.coreservlets.com/Course-Materials/spring.html

• http://static.springsource.org/spring/docs/2.5.x/spring-reference.pdf OR

• http://static.springsource.org/spring/docs/2.5.x/reference/index.html

Performance Applications

There are various performance applications, but we will just focus on the two main clients.

1. PubInfoSubmissionPerfClient.java (pub.bat)- Submit information to the Phoenix
services via the Submission Service Stub. It also calculates metrics as the publisher
preceives the information being published.

2. SubInfoInfoBrokerServicePerfClient.java (sub.bat) - Subscribe for information from
the Phoenix services via the Information Brokering Service Stub. This client calculates

Pre-Requisites

• There are Batch (.bat) and soon to be Shell (.sh) scripts available in the \base-
implementation\performance directory. These both call Apache Ant to run the clients. The
Ant script (build.xml) is located in the same directory. Thus, Apache Ant is required to
run these example applications (see: http://ant.apache.org) for more information).
NOTE: These applications are compiled by using Maven when in the main/root level
pom.xml file in \base-implementation\ is executed.

• In order to run these clients, the needed Phoenix services should be configured and
running. The Java Service Container (JSC), has a pre-configured set a services and
workflow built in, and thus recommended to use while running these example
applications.

• The ant script defaults to using the configperfapps.properties file, but this can be changed
via command line. Just run this command: ant -DpropertiesFile=my.properties sub

The Clients

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
58

These performance clients are governed by a Spring Framework (from
http://www.springsource.org) config file. This file contains all the necessary information for all of
the clients. It contains the client configurations for publishing, subscribing, querying, and
creating types. This contents of each client configuration is governed by that clients java
methods (javadoc), as the Spring Framework uses Inversion of Control (IoC). Each bean in that
file represents a client that is being created and configured. The clients by defaults are governed
by this spring file: \base-
implementation\performance\src\main\resources\phoenix.perf_client_beans.xml

Spring Framework Links:

• http://www.roseindia.net/spring

• http://courses.coreservlets.com/Course-Materials/spring.html

• http://static.springsource.org/spring/docs/2.5.x/spring-reference.pdf OR

• http://static.springsource.org/spring/docs/2.5.x/reference/index.html

Third Party Libraries
Third party libraries offer abilities that expand and enable the Base Implementation. This section
will enumerate all third party libraries utilized by the Base Implementation and explain what each
does and why it was chosen.

• Berkeley DB XML

• Mockets

• XPP3

• XStream

Berkeley DB XML

The Berkeley Database has two exclusive components: Berkeley DB and Berkeley DB XML.
Berkeley DB (BDB) is a key-value pair database that is loosely comparable to a Java Hashtable
construct while Berkeley DB XML (BDBX) is a Native XML Database (NXD) designed to store raw
XML documents. Retrieval of values from BDB consists of supplying the database with a key to
retrieve the corresponding value for while retrieval of records from BDBX requires a valid XQuery
statement.

Berkeley currently supports a host of programming languages via the Simplified Wrapper and
Interface Generator (SWIG) and native Berkeley Application Programming Interfaces (API). This
current set includes: C++, Java, Perl, PHP, Python, and Tcl. C#/.NET and Ruby are not
supported internally but external solutions are available.

Berkeley DB XML 2.5 Release Overview [3]

Release 2.5 is primarily a feature release with a small number of useful features:

• Automatic indexing of leaf elements and attributes

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
59

• Whole Document container compression with optional user-defined compression in C++
and Java

• Improvements in node storage containers that reduce total size of containers

• User-defined external XQuery extension functions in C++, Java and Python

• XQuery debug API in C++, Java and Python

• Improvements in the XmlResults class enabling better offline results handling

Berkeley executes as an embedded database within a hosting application’s memory space. The
Berkeley databases, as supplied by Oracle, do not function as standalone services in the
traditional database manner. Rather, in order to execute, Berkeley requires that several Dynamic
Link Library (DLL) files be available somewhere on the parent application’s PATH and that
Berkeley’s resources be managed by your custom application. Berkeley databases, both the BDB
and BDBX, function as in-memory databases with an option to write data to disk in specially
formatted files. The complete list of Berkeley DB XML libraries is as follows:

Library Name Type Version

Berkeley DB JE JAR 2.5.13

Berkeley DBXML JE JAR 2.5.13

msvcp DLL 7.1

msvcr DLL 7.1

xerces-c DLL 3.0

xqilla DLL 2.2

zlib DLL 1.0

For Linux builds, replace all DLLs with the following Shared Objects (SO) libraries.

Library Name Type Version

libdb-4.6 SO 4.6

libdb_cxx-4.6 SO 4.6

libdb_java-4.6 SO 4.6

libdbxml-2.4 SO 2.4

libdbxml_java-2.4 SO 2.4

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
60

libxerces-c SO 2.8

libxqilla SO 4.0.3

Mockets

Mockets (for “mobile sockets”) is a comprehensive communications library for applications.
“Mockets is a comprehensive communications library designed to address challenges specific to
mobile ad-hoc networks. Mockets have been implemented at the application-level to simplify
deployment and portability. Both stream-oriented and message-oriented abstractions are
supported, with the message-oriented service providing multiple classes of service (reliable,
unreliable, sequenced, unsequenced), message tagging and replacement, and prioritization.
Mockets also interfaces with a policy management infrastructure to support bandwidth limitation.
Finally, mockets supports transparent migration of communication endpoints across hosts
without the need to terminate and reestablish connections. Mockets provides similar semantics
to TCP but performs better than TCP on adhoc networks.” [1]

XPP3

The XML Pull Parser (XPP) is a streaming XML pull parser quickly processes XML inputs. For more
information about XPP3 refer to the web-site: http://www.extreme.indiana.edu/xgws/xsoap/xpp

Library Name Type Version

xpp3 JAR 1.1.4c

xpp3_xpath JAR 1.1.4c

XStream

XStream is a library that serializes Java Objects to XML and restores them. For more information
about XStream, refer to its web-site: http://xstream.codehaus.org

Library Name Type Version

xstream JAR 1.3.1

Requirements

1. Implement each and every component and service interface at a basic level.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
61

o Implement all services as Plain Old Java Objects (POJO).

2. Implement information definition, processing, & delivery that supports both attribute-
value pair and XML metadata.

o Information Type Management

1. Implement information type definitions using attribute-value pair based
metadata.

2. Implement information type definitions using XML based metadata.

o Information Brokering

1. Implement information brokering that supports simple attribute-value pair
operations.

2. Implement information brokering that supports the full range of XPath 1.0
syntax and operations.

3. Implement service definition and processing that supports XML service descriptions.

o Service Brokering

1. Implement support for describing services using XML.

2. Implement service brokering that supports the full range of XPath 1.0
syntax and operations.

4. Implement a simple POJO service container.

1. POJO container shall be able to start and stop services in a specified order.

 Provide simple exemplary edge actor classes that show how to perform basic information
management operations using Phoenix constructs and services.

o Information Publish & Subscribe

o Information Persistence & Retrieval

o Information Type Definition & Registration

Testing

The Phoenix Base Implementation shall be thoroughly unit, integration, and performance tested
using a variety of commercially available and home-grown testing products and methodologies.

Unit Testing
Unit testing of all developed project components and services will be accomplished through the
use of the JUnit testing framework. JUnit was chosen because it is becoming the de facto
standard within the Java development world for unit testing and it has well-supported plug-ins

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
62

for both the Eclipse IDE and the Maven build environment. The current version of JUnit used for
unit level testing is 4.4.

Unit test coverage reports will be generated by the Cobertura test analysis tool. This tool plugs
into the Maven build environment and will be configured to run whenever the web-site is built for
a Maven project module. Cobertura offers insight as to what executable lines of code have been
tested, how many times they have been executed, and which conditions of a conditional branch
have been satisfied by the tests being run. The reports generated divide executable code
coverage numbers and conditional branch coverage numbers. The current version of Cobertura
Maven plug-in being used is 2.2.

A sample Cobertura report is shown below.

Integration Testing
Integration testing of the Base Implementation services is carried out through the development
of specific JUnit test cases that are contained in their own project module insightfully named:
"integrationtest". These integration JUnit tests do NOT use the Spring configuration files to
configure and interrelate the services. Service configuration and relationships are created at
JUnit test setup time and are hard coded into the individual test classes. This was purposefully
done to remove the Spring configuration and setup as an extra variable when testing the
relationships between Base Implementation services.

Existing Integration Tests

The current set of integration tests is as follows:

• Broker and Disseminate

• Broker and Notify

• Submit and Validate

• Submit, Broker, and Disseminate

• Submit, Broker, and Notify

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
63

• Submit, Broker and Store, and Disseminate

• Submit and Store

• Submit, Store, Query, and Disseminate

Broker and Disseminate

This integration test verifies the relationship between the Information Brokering Service and the
Dissemination Service when registering subscriptions for information and then brokering
submitted information. This test focuses specifically on the link between the IBS and the DS by
removing the Submission Service from the playing field. This test is limited to a single IBS and a
single DS.

Broker and Notify

A test that verifies the relationship between the Information Brokering Service and the Event
Notification Service by testing the operations of the ENS. During this test an event consumer
registers for an event notification and then listens for a corresponding event. The event
consumer in this test is a simple thread, controlled by the test class, that opens and reads from
an Event Input Channel. This test adds the Submission Service to the Broker and Notify test
environment to check that information submission operations do not affect the outcome of an
information brokering operation that results in an event notification operation.

Submit and Validate

A test that verifies the relationship between the Submission Service and the Information Type
Management Service by testing the validation of submitted XML information instances. This test
uses one instance of each service. No actual checks are included in the test code because no
exceptions are thrown back to the producer (in this case the test code is the producer). An
exception reported via Log4J is expected to be generated by this test.

Submit, Broker, and Disseminate

This integration test verifies the basic publish and subscribe functionality provided by configuring
a Submission Service, Information Brokering Service, and Dissemination Service into a functional
chain. This test focuses on the submission and reception of information and fails if anything goes
wrong at any point in the operational or functional chain of events that are inherent in publish
and subscribe operations. This test is limited to a single SS, IBS, and DS. This test does not
include a Repository Service, the SS is configured to only forward submitted information to the
single available IBS.

Submit, Broker, and Notify

A test that verifies the relationships between the Submission Service, Information Brokering
Service, and Event Notification Service during information brokering operations that result in an
event notification operation. During this test an event consumer registers for an event
notification and then listens for a corresponding event. The event consumer in this test is a
simple thread, controlled by the test class, that opens and reads from an Event Input Channel.

Submit, Broker and Store, and Disseminate

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
64

A test that verifies the relationships between the Submission Service and a single Information
Brokering Service and a single Repository Service. This test would verify that a single instance of
information can be sent to two different services over two different information channels for two
different operations. This test also includes the information dissemination operation since we
want to fully test the integration of publish and subscribe with the storage operation. The
consumer in this test is a simple thread, controlled by the test class, that opens and reads from
an Information Input Channel.

Submit and Store

This test verifies the basic relationship between a Submission Service and a Repository Service.
This test checks to make sure that all submitted information instances have been stored in the
correct locations for possible later retrieval. This test utilizes the Berkeley DB XML repository as
the data store for the RS. This test is limited to a single SS and a single RS. This test does not
include an Information Brokering Service, the SS is configured to only forward submitted
information to the single available RS.

Submit, Store, Query, and Disseminate

This test verifies the basic relationship between a single Repository Service and a single Query
Service. This test checks to make sure that the submitted information instances have been
stored, the correct number of instances match the query issued to the QS, and the correct
information instances are returned to the consumer. This test also utilizes a single Submission
Service for information submission and forwarding to the RS as well as a single Dissemination
Service for distribution of the query results to the consumer. The consumer in this test is a
simple thread, controlled by the test class, that opens and reads from an Information Input
Channel.

Performance Testing
Performance testing was performed using standalone clients and a single Java Service Container
hosting a standard set of Phoenix Services. A suite of three machines served as the testbed for
the performance tests. The network for the test was a 100/1000 Gigabit link network, with all
machines having supporting network cards installed as their primary network connection. Two
machines were managed by Windows XP while one was managed by Ubuntu 10.4, thus proving
the cross-OS compatibility of the Base Implemenation's communications mechanisms.

The clients included simple information producer, consumer, inquisitor, type management,
session management and event firing and reception. Each client was developed in Java using the
Phoenix Base Implementation. The clients are executed by an Ant script that also contains the
configuration settings for each client. These settings are passed into the client as command line
arguments.

The standard set of Phoenix services deployed for these tests includes one instance each of the:
Authorization Service, Dissemination Service, Event Notification Service, Information Brokering
Service, Information Type Management Service, Query Service, Repository Service, Service
Brokering Service, Session Management Service, and Submission Service.

All performance tests were run ten times and the results averaged to produce the final reported
metrics. All tests performed utilized the network, with no co-hosting of clients either with each
other or with the JSC.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
65

The throughput and latency of the Submission, Information Brokering, and Dissemination
Services were tested by submitting a set of information isntances of a known size. The
throughput of the services were measured in objects per second while the latency was measured
in seconds per object. These tests were accomplished having the information consumer client
configure the service at runtime to forward processed information to it. For example, to test the
Dissemination Service a static configuration for the consumer client was part of the information
instance that was submitted to the service by the information producer client.

Additional performance and stress testing was performed using the High Performance Computing
(HPC) EmuLab cluster. All test results were compiled using spreadsheets and formed the basis
for an accompanying performance testing technical report.

Reference
[1] Arguedas, M., Breedy, M., Carvalho, M., Suri, N., Tortonesi, M., Winkler, R., “Mockets: A
Comprehensive Application-Level Communications Library”, Defense Technical Information Center,
2005.

Reference

Documents

1. Lipa, Brian. "Berkeley Overview". AFRL In-House Research (Non-Published), May, 2009.

2. Sun MicroSystems, Inc. "Java Code Conventions".
http://java.sun.com/docs/codeconv/CodeConventions.pdf, 12 Sepetember 1997.

3. Oracle. "2.5 Release Overview".
http://www.oracle.com/technology/documentation/berkeley-
db/xml/ref_xml/changelog/2.5.html, September, 2009.

Terms and Acronyms

The table below gives a brief description of important terms and acronyms used in this
document. For definition of Phoenix Architecture terms and acronyms refer to its specification .

Term/Acronym Meaning

AFRL Air Force Research Laboratory.

API Application Programming Interface.

AS Authorization Service.

ASD Attribute Schema Document.

BDB Berkeley Database.

BDBX Berkeley Database XML.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
66

CRS Client Runtime Service.

DLL Dynamic Link Library.

DoD Department of Defense.

DOM Document Object Model.

DS Dissemination Service.

DTD Document Type Definition.

ENS Event Notification Service.

ESB Enterprise Service Bus.

FMS Filter Management Service.

HTTP Hypertext Transfer Protocol.

IA Information Assurance.

IBS Information Brokering Service.

IDS Information Discovery Service.

IM Information Management.

ITMS Information Type Management Service.

JAR Java Archive.

JDK Java Developer's Kit.

JSC Java Service Container.

JVM Java Virtual Machine.

LFS Local File System.

MSV Multi-Schema Validator.

NFS Network File Share.

NXD Native XML Database.

PEP Policy Enforcement Point.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
67

PHP PHP: Hypertext Preprocessor.

PMD No official definition, several unofficial including Programming Mistake Detector.

POP Point of Presence.

POJO Plain Old Java Object.

QS Query Service.

RDBMS Relational Database Management System.

RI Reference Implementation.

RMI Remote Method Invocation.

RS Repository Service.

SDK Software Development Kit.

SO Shared Object.

SOA Service Oriented Architecture.

SBS Service Brokering Service.

SMS Session Management Service.

SS Submission Service.

SUS Subscription Service.

SWIG Simplified Wrapper and Interface Generator.

TCP Transport Control Protocol.

UDP User Datagram Protocol.

UI User Interface.

XBS Stream Brokering Service.

XDS Stream Discovery Service.

XML Extensible Markup Language.

XPP XML Pull Parser.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
68

XRS Stream Repository Service.

XSD XML Schema Document.

XSLT Extensible Stylesheet Language Transformations.

Releases

This section lists all releases made of the Phoenix Base Implementation including short
descriptions of why each release was created. The row colors indicate whether or not the release
process result in a useable version of the software. Red indicates a release that failed to meet
the Quality Assurance standards of the group and therefore was not delivered to any interested
parties. Green indicates a successful release that may have been shipped to one or more
external groups.

Version Release Description
1.0.0 Internal release used to setup and configure the release process.

1.0.1 Internal release used to trouble shoot the release process.

1.0.2 Internal release used to trouble shoot the release process.

1.0.3 Initial release created for baseline purposes. No functionally complete modules
included.

1.0.4 Internal release prior to 1JUN delivery date. Discarded due to inconsistencies.

1.0.5 Internal release prior to 1JUN delivery date. Discarded due to inconsistencies.

1.0.6 Release created for 18JUN delivery date. Included functionally complete modules:
Channel, Core, Information, Information Type (just contexts, not ITMS)

1.0.7 Internal release prior to 1AUG delivery date. Discarded due to inconsistencies.

1.0.8 Internal release prior to 18AUG delivery date. Discarded due to inconsistencies.

1.0.9 Release created for 18AUG delivery date. Added functionally complete modules:
Dissemination, Event, Event Notification, Information Brokering, Information Type, In-
Memory Platform, Expression, Submission

1.1.0 Internal release prior to 1OCT delivery date. Discarded due to Typed File Repository
JUnit test class causing a hang during the build process.

1.1.1 Internal release prior to 1OCT delivery date. Bug fix for threading issues in Typed File

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
69

Repository JUnit test. Discarded due to <100% dependency convergence.

1.1.2 Release created for 1OCT delivery of Base Implementation code base. Fixed
dependencies to achieve 100% convergence. Includes Base context update attribute
callback patch from BBN. Added functionally complete modules: Example Apps, Java
Service Container (formerly In-Memory Platform), Integration Test, Query, Repository
(except move to archive methods), Session, Session Management

1.1.3 Internal release created for the inclusion of the asynchronous channels. No new
modules added to project. This release was found to have intermittent build issues
within the integration tests module and was thus quickly replaced with build 1.1.4.

1.1.4 A finalized, official release of the Base Implementation suitable for delivery to external
contractors. No new modules were added to this project.

1.1.5 A finalized, official release of the Base Implementation suitable for delivery to external
contractors. Added functionally complete modules: Frame, Connection, Stream
Brokering, and Phoenix Invocation Control (PIC).

This release was officially tagged: "Lead" (as in the 82nd element on the periodic table)

1.1.6 A finalized, official release of the Base Implementation suitable for delivery to external
contractors. In actuality, this release was created solely for the purpose of base-lining
the Fawkes CoT Router Services.

This release was officially tagged: "Copper"
1.1.7 Version 1.1.7 includes a number of enhancements. First and foremost services that

provide for the management of streaming media have been introduced or enhanced.

• The StreamDiscoveryService design and implementation has been completed
which allows for the characterization and query capability associated with active
streams. The design is fully documented using UML diagrams and a full
complement of JUnit tests have been developed to insure that the
implementation meets all specifications and design goals.

• The Asynchronous ConnectionService design and implementation has been
completed. The main function of the connection service is to manage and route
streamed data from source to sink. In essence the service acts as a
dissemination service for pre-brokered data. A complete set of JUnit tests are
included to insure that the implementation meets all specifications and design
goals.

• The StreamBrokeringService design and implementation has been completed. A
complete set of JUnit tests are included to insure that the implementation meets
all specifications and design goals.

• In addition to the included or enhanced services mentioned above, this release
includes the Asynchronous Frame Channels and byte connection groups have
been added to the ConnectionService. Current Frame channels are for
synchronous designs only. Asynchronous frame channels required for use in the
next version of connection service and stream brokering service.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
70

In addition other features included in Version 1.1.7 include

• Long term archival of information instances. This capability allows for the
movement of subsets of persisted information instances for RepositoryServices
to longer term archive.

• Output Channel Monitoring. This implementation, while implemented as a
generic solution, is currently applied only to the DisseminationServices.

• Input Channel Monitoring. This implementation, while implemented as a generic
solution, is currently applied only to the SubmissionServices.

• Subscription Monitoring. This implementation utilizes the
EventNotificationService and a new Heart-Beat event.

• Many other minor bug fixes and enhancements have been made throughout the
implementation. As with all code changes, JUnit tests have been created or
enhanced to provide adequate

This release was officially tagged: "Bronze"

1.1.8 Version 1.1.8 includes a number of enhancements focusing on the introduction of the
implementation level Channel Management, Service Multiplexor, and Task Scheduler
interfaces and default implementations.

• The Channel Manager interface provides a plug-in point for unique channel &
buffer management schemes. This capability is exposed at the developer and
the Spring configuration levels.

• The Service Multiplexor interface provides a plug-in point for policy (or other
technology) based logic for determining how services are orchestrated. It is
used to determine where an entity (information, event, etc.) goes next after
being processed by the parent service.

• The Task Scheduler interface provides a plug-in point for prioritizing service task
execution.

In addition other features included in Version 1.1.8 include

• Many other minor bug fixes and enhancements have been made throughout the
implementation. As with all code changes, JUnit tests have been created or
enhanced to provide adequate

This release was officially tagged: "Silver"

1.1.9 Version 1.1.9 includes a number of enhancements focusing on the introduction of the
implementation level Control Channel Manager interface and default implementation,
the basic implementation of the Filter Management Service, Subscription Service, and
Service Brokering Service, and numerous bug fixes within the channel and streaming
packages.

• The Control Channel Manager interface provides a plug-in point for unique
service stub management schemes. This capability is exposed at the developer
and the Spring configuration levels.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
71

This release was officially tagged: "Gold"

1.2.0 Version 1.2.0 includes the final revision of the channel interfaces and implementation,
the integration of the Stream Repository Service (XRS) into the baseline, functionality
upgrades to the Java Service Container, and the first implementation of the Client
Runtime Service (CRS) and Information Discovery Service (IDS).

• The channel interfaces were re-designed to provide consistent parent interfaces
for specific types of channels. The implementation was re-implemented to better
define the set of application and transport protocols resulting in a (hopefully)
less confusing implementation design.

• The Stream Repository Service was designed and implemented to store
streaming information.

• The Java Service Container was upgraded to include the notion of service
dependencies at start-up time. It was also extended to provide the ability to
start each service as its own thread of execution within the JVM. This is an
ability that may be toggled on or off via the Spring configuration file.

• The Client Runtime Service was implemented as an edge actor proxy service. It
abstracts most of the detailed Phoenix constructs and coding away from the
edge actor using it.

• The Information Discovery Service was implemented to provide a central search
mechanism for information type definitions and for finding services that are
currently supporting specific types of information.

This release was officially tagged: "Platinum"
1.2.1 Version 1.2.1 includes boosted JUnit coverage for all modules, the shifting of the

streaming services to their own satellite project, and numerous bug fixes to channels
and other components.

• The streams services were re-located to their own satellite project to simplfy the
Base Implementation codebase.

This release was officially tagged: "Platinum Plus"

